
11/29 Lecture outline

• Basic idea of statistical mechanics: macro-state is specified by e.g. N and U . Micro-

state is specified by e.g. {Ni}, with N =
∑n

i=1
Ni and U =

∑n
i=1

εiNi. The number of

micro-states associated with a given macro-state is Ω(N,U, . . .). Boltzmann: the entropy

is S = f(Ω) for some monotonically increasing function f . If system has isolated parts 1

and 2, then Ω = Ω1Ω2 and S = S1 + S2, so

S = k ln Ω.

For large N , we can also replace Ω ≈ ωmax, where ωmax is the number of states in the

most probable configuration. We will soon justify the fact that the constant k is the same

one appearing in the ideal gas law, PV = NkT . (Recall n = N/NA and R = NAk, where

NA = 6.02 × 1026 particles/kilomole.) Summary:

S(U,N, ...) = k ln Ω(U,N, ...) ≈ k lnωmax.

Ω(U,N) =
∑

{Ni}

′

ω({Ni}),

where the prime is a reminder that the {Ni} must satisfy
∑

iNi = N and
∑

iNiεi = U .

• Suppose that there are energy levels εi, and that each has a degeneracy factor gi.

Suppose that we put Ni particles into the energy level εi, and that there are N particles

total. If the particles are all distinguishable, and there is no restriction on them occupying

the same state, then the number of configurations with a given set of {Ni} is

ωM.B.({Ni}) = N !

n∏

i=1

gNi

i

Ni!
,

here i labels the energy levels, or cells, and gi is the number of states with energy εi (or

states in that cell). If we set all gi = 1, this is simply the multinomial distribution (Recall a

HW problem about a case where all gi = 1). The gNi

i accounts for the extra configurations

coming from the degeneracies of energy levels (or cells).

• The above result is problematic. The basic problem is that it describes distinguish-

able objects. This is related to a question in class about entropy of mixing, upon removing

a partition, when the particles on the two sides are the same (this is called Gibbs’ para-

dox). The correct answer is a replacement of the above with a quantum answer. But,
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pre-quantum, Gibbs found a simple modification of the above. Recall from thermodynam-

ics ∆S = Nk ln(Vf/Vi) + 3

2
Nk ln(Tf/Ti) for monatomic ideal gas. This tells us

S = Nk lnV +
3

2
Nk lnT + f(N).

Soon we will see what the f(N) is. It is reasonable to expect f(N) = aN + b for constants

a and b, since entropy is extensive, and that is indeed what we’ll find. Gibb’s paradox is

that if we then have N1 atoms in volume V1 and N2 in volume V2 and then take away the

partition, all the atoms are now in the larger volume V = V1 + V2. If it’s free expansion,

the energies are unchanged, and

∆S = kN1 ln(V/V1) + kN2 ln(V/V2) > 0,

which is correct if the atoms are different. But this is incorrect if they’re of the same

type and the process is reversible (which requires that P1 = P2 and T1 = T2, so N1/V1 =

N2/V2 = (N1 +N2)/(N1 + V2); in this case we should instead get ∆S = 0. Gibb’s recipe

to fix this has to do with the f(N). He says that

S = Nk ln(V/N) +
3

2
Nk lnU + aN + b

for constants a and b. This amounts to dividing Ω by NN ≈ N !.

• Summary: Gibbs tells us to get rid of the N !, so replace above with

ωM.B.G.({Ni}) =
n∏

i=1

gNi

i

Ni!
,

• Quantum statistical mechanics. Main point is that each electron is identical with

every other electron. Likewise every photon is identical with every other photon. Switching

two identical particles does not count as a new state. Also even (or odd) statistics of

the wavefunction for bosons (or fermions): ψB/F (~x1, ~x2) = ±ψB/F (~x2, ~x1). Gives Pauli

exclusion principle for fermions. So, for identical particles,

ω({Ni})B.E. =
∏

i

(Ni + gi − 1)!

Ni!(gi − 1)!
bosons

ω({Ni})F.D. =
∏

i

gi!

Ni!(gi −Ni)!
fermions.
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For the fermion case, each gi level can be filled at most once (Pauli exclusion principle),

and the factor counts the number of choices of which Ni out of the gi possibilities will be

filled, with gi −Ni left unfilled. Picture the gi states as gi boxes, and the Ni particles as

Ni balls, and we want to count how many ways the balls can be put in the boxes if at most

one ball fits in each box. In the boson case, there is no restriction on how many times

each of the gi possibilities can be filled. We again have a picture of Ni balls and gi boxes,

but now there is no restriction on how many balls can go in each box. The combinatoric

factor can then be understood in terms of different configurations of Ni balls and gi − 1

separators.

• Illustrate the gi degeneracy factors. E.g. consider a free particle in a cube, with sides

of length L. To enumerate the available states, it’s simpler to consider the quantum theory

(otherwise must pixelize phase space by hand, as a regulator). The QM wavefunction

is ψ = A sin(nxπx/L) sin(nyπy/L) sin(nzπz/L), where ni = 1, 2, . . ., and energy is ε =

π2h̄2n2/2mL2), where we define n2

j ≡ n2

x + n2

y + n2

z. The groundstate has n1

j = 3, and

there is a unique such state. The first excited state has n2

j = 6, and there are gj = 3 such

possibilities. The next excited state has n2

j = 9 and again gj = 3. For large n, the number

of states in the range from n to n + dn is N(n)dn ≈ 1

8
4πn2dn, where the 1/8 is because

all ni > 0. Let’s use dε = π2h̄2ndn/mL2 to get

g(ε)dε = N(n)dn =
1

8
4π(2mL2ε/π2h̄2)1/2(mL2dε/π2h̄2) =

4πV
√

2

(2πh̄)3
m3/2ε1/2dε.

For fermions, we should multiply this by 2, for the possible two spin states (up or down).
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