
10/23 Lecture outline

• Recall from last time:
∮

/dQ

Text

≤ 0.

And for a reversible cycle, Text = T , and can reverse to get similar inequality with /dQ →

−/dQ, so
∮

/dQR

T
= 0.

So /dQR/T = dS is a state variable! For any states 1 and 2, we have

S2 − S1 =

∫

2

1

/dQR/T

over any reversible path. This defines the entropy difference ∆S between two states

even if the process in between is irreversible. The point is that the entropy difference

doesn’t care about the process in between, only on the endpoints. But it is crucial that

∆S always be computed along a reversible path (even if the process involved isn’t itself

reversible)!

• Note that, for any process connecting states 1 and 2,

∫

process

/dQ

Text

≤ S2 − S1,

with equality iff the process is reversible. The LHS depends on the process, whereas the

RHS depends only on the endpoints, and is some definite value.

• Example: free expansion of an ideal gas, as in the Joule experiment mentioned in

class. The volume of the gas increases irreversibly from V1 to V2 > V1. No work is done

in the process, so ∆W = 0. No heat is transferred in the process, so /dQ = 0 and ∆Q = 0.

Thus
∫

process
/dQ/Text = 0. On the other hand, we compute ∆S as discussed in the last

lecture: pick to compute it along a reversible isotherm. We get:

S2 − S1 =

∫

/dQR

T
= nR ln

(

V2

V1

)

.

• For a thermally isolated system, we have /dQ = 0, so Sf −S1 ≥ 0. This is the arrow

of time. A thermally isolated state is in the state of maximum entropy, with external

constraints. If not thermally isolated

∆Suniverse = ∆Ssystem + ∆Ssurroundings ≥ 0.

1



• Example: consider a cyclic engine, operating between heat baths at temperatures T1

and T2, with T2 > T1. Suppose the engine completes a cycle, consisting of two isotherms,

connected by two adiabats. Let Q2 be the heat absorbed by the engine at T2, and Q1 the

heat absorbed by the engine at T1 (with this definition, we should have Q1 < 0). Because

the engine completes a full cycle, and S is a state variable, we have ∆Sengine = 0. The bath

at T2 has ∆Sbath2 = −Q2/T2 and the bath at T1 has ∆Sbath1 = −Q1/T1. Note that we

computed ∆Sbath =
∫

/dQT /Tbath = ∆Q/Tbath, where we take the bath to be sufficiently

large that it has unchanging temperature, so the Tbath can be taken out of the integral.

We then have

∆Suniverse = ∆Sbath1 + ∆Sbath2 + ∆Sengine = −
Q1

T1

−
Q2

T2

≥ 0.

Which we can write as Q1/Q2 ≤ T1/T2. Since the engine does work W = Q1 + Q2, the

above entropy condition gives the efficiency η = W/Q2 ≤ 1 − T1/T2, as we’ve seen before.

So the maximum efficiency of engines is just a special case of ∆Suniverse ≥ 0.

• Rewrite the first law as

dU = /dQ − /dW = /dQR − /dWR = TdS − PdV.

Please think deeply about this equation – don’t just read it quickly as being obvious. In

any process, reversible or not, we have some /dQ and /dW , which depend on the process.

For example, for the Joule free expansion, both are zero. The process dependence cancels

with their difference, since dU is a state variable. So the difference can be computed for a

reversible process. Then we can use /dQR = TdS and /dWR = PdV . Note that, in general,

/dQ ≤ TdS (as we’ve seen above), and so /dW ≤ PdV , where the inequality becomes an

equality iff the process is reversible.

Let’s write again the following equation, which is the most important equation of

thermodynamics

dU = TdS − PdV !

Among other uses, we can use this equation as an equation for S:

dS =
dU

T
+

PdV

T
.

For the case of an ideal gas, we can write dU = CV dT , and P = nRT/V to get

dS = CV

dT

T
+ nR

dV

V
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and integrate to get

S2 − S1 = CV ln

(

T2

T1

)

+ nR ln

(

V2

V1

)

.

Note that S is an increasing function of both T and V . We’ll see later that S is related to

molecular disorder, and the system is more disordered when T or V increases.

If we prefer to use P instead of V , we could rewrite this using PV = nRT as

S2 − S1 = CP ln

(

T2

T1

)

− nR ln

(

P2

P1

)

,

where recall CP = CV +nR. For fixed T , increasing P compresses the gas, so the disorder

S decreases.

• Instead of our usual P, V diagrams, we can use T, S diagrams. Plot T on the vertical

axis, and S on the horizontal one. Then ∆Q =
∫

path
TdS is the area under the curve, and

for a closed cycle ∆Q =
∮

TdS is the area inside the closed loop. For a cyclic engine,

we have ∆U = 0, so ∆Q = ∆W . Draw the ideal gas Carnot engine as an T, S diagram:

it looks like a rectangle in these coordinates, with T2 the temperature at the top of the

rectangle and T1 that at the bottom. So the rectangle has height ∆T = T2 − T1. The

width of the rectangle is S2−S1 = nR ln(Vb/Va) = nR ln(Vc/Vd). The area of the rectangle

is the product of the height and width, which gives ∆W = ∆Q, agreeing with what we

computed in class before using the P, V diagram.

• Non-ideal gasses, and general case of C(T ). If V2 = V1, have

S2 − S1 =

∫

2

1

CV (T )dT

T
,

where the integral is a reversible path with constant volume. Similarly, if P2 = P1, we can

compute ∆S using CP (T ) and integrating over a reversible path with constant pressure.

• Back to ∆Suniverse ≥ 0. For a cyclic engine, ∆Sengine = 0. We saw for the ideal

Carnot engine that the maximum efficiency is when ∆Suniverse = 0. In general, ∆Suniverse

is related to wasted energy. For example, in the Joule free expansion of an ideal gas, from

volume V1 to volume V2, we have T2 = T1 = T and

∆Ssystem = ∆Suniverse = nR ln(V2/V1), ∆Q = ∆W = 0.

On the other hand, if we considered the reversible expansion of an ideal gas pushing a

piston from V1 to V2 we would get

∆Ssystem = −∆Sbath = nR ln(V2/V1), ∆Q = ∆W = nRT ln(V2/V1).

Of course, ∆Ssystem is the same in either case, since it’s a state variable. In the irreversible

case we have ∆Suniverse > 0 and in the reversible one we have ∆Suniverse = 0. These two

cases illustrate a general connection between ∆Suniverse and wasted work, the degradation

of energy from useful to useless form.
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