
10/28 Lecture outline

? Reading: Tong 3.7, Luke, chapter 8

• Consider full interacting theory, with Hamiltonian H. Define the true vacuum |Ω〉

such that H|Ω〉 = 0, and 〈Ω|Ω〉 = 1.. The true vacuum of an interacting QFT is a

complicated beast – it can be thought of roughly as a soup of particle-antiparticle states

– it can not be solved for solved for exactly. (Progress: in classical mechanics, can solve 2

body problem exactly, but ≥ 3 body only approximately; in GR, can solve 1 body problem

exactly, but ≥ 2 body only approximately; in QM can generally solve even only 1-body

problem only approximately, but at least the 0-body problem is trivial; in QFT, even the

0-body problem is not exactly solvable.)

Define the Green functions or correlation functions by

G(n)(x1, . . . xn) = 〈Ω|TφH(x1) . . . φH(xn)|Ω〉,

where φH(x) are the full Heisenberg picture fields, using the full Hamiltonian.

Now show that

G(n)(x1 . . . xn) =
〈0|Tφ1I(x1) . . . φnI(xn)S|0〉

〈0|S|0〉
,

where |0〉 is the vacuum of the free theory, and φiI are interaction picture fields. To show

this, take t1 > t2 . . . > tn and put in factors of UI(ta, tb) = T exp(−i
∫ tb

ta

HI) to convert φI

to φH , using φH(xi) = UI(ti, 0)†φI(xi)UI(ti, 0). Get 〈0|UI(∞, t1)φH(t1) . . . φH(tn)UI(tn,−∞)|0〉,

and UI at ends can be replaced with full U(t1, t2), since H0|0〉 = 0 anyway. Now use

〈Ψ|U(t,−∞)|0〉 = 〈Ψ|U(t,−∞)

(
|Ω〉〈Ω| +

∑ ∫
|n〉〈n|

)
|0〉

= 〈Ψ|Ω〉〈Ω|0〉 + lim
t′→−∞

∑ ∫
eiEn(t′−t)〈Ψ|n〉〈n|0〉

= 〈Ψ|Ω〉〈Ω|0〉

where 1 was inserted as a complete set of states, including the vacuum and single and

multiparticle states, including integrating over their momenta, but the wildly oscillating

factor kills all those terms. (Riemann-Lebesgue lemma: limt→∞

∫
dωf(ω)eiωt = 0 for nice

f(ω)) The result follows upon doing the same for the denominator.

The 〈0|S|0〉 in the denominator eliminates the vacuum bubble diagrams. So we have

G(n)(x1, . . . xn) =
∑

Feynman graphs without vacuum bubbles.
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• Example: G(4)(x1, x2, x3, x4) in λφ4/4! theory. For each line from x to y, get a

factor of ∆F (x − y), and for each vertex at y get −iλ
∫

d4y.

• It’s more convenient often to work in momentum space,

G̃(n)(p1, . . . pn) =

∫ n∏

i=1

d4xie
−ipixiG(n)(x1 . . . xn).

Similar to what we computed before to get S-matrix elements, but the external legs

include their propagators, and the external momenta are not on-shell.

• From Green functions G̃(n)(p1, . . . , pn), computed with external leg propagators,

allowed to be off-shell, to S-matrix elements. E.g.

〈k3, k4|S − 1|k1k2〉 =

4∏

n=1

k2
n − m2

n

i
G̃(−k3,−k4, k1, k2),

where the factors are to amputate the external legs. Consider for example G̃(4)(k1, k2, k3, k4)

for 4 external mesons in our meson-nucleon toy model. The lowest order contribution is

at O(g0) and is

(2π)4δ(4)(k1 + k4)
i

k2
1 − µ2 + iε

(2π)4δ(4)(k2 + k3)
i

k2
2 − µ2 + iε

+ 2 permutations.

This is the −1 that we subtract in S − 1, and indeed would not contribute to 2 → 2

scattering using the above formula, because it is set to zero by
∏4

n=1(k
2
n − m2

n) when the

external momenta are put on shell. To get a non-zero result, need a G̃(4) contribution with

4 external propagators, which we get e.g. at O(g4) with an internal nucleon loop.
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