12/2 Lecture outline
* Reading: Luke chapter 11. Tong chapter 6

e Last time: massive spin 1 field, with

1
L= =1 FuF" 4 5 A, A7,

which gives the EOM 9, F* + p?A” = 0, and this implies 9,A" = 0; the vector is

transverse, by construction. We quantized the spatial components

and obtained the Feynman rules that massive vectors have the momentum space propagator

—i(guw — kuky/p?)
k2 — p? + ie

And (0]|A,(2)|V (k,7)) = €,(k) e~ so incoming vector mesons have €, (k) and outgoing
have € (k).

We can couple the massive vector to other fields, e.g. to a fermion via L;,; = —gy AT,
with I' = 1 (vector) or I' = ~5 (axial vector). Gives Feynman rule that a vertex has a
factor of —igy*T.

e Now consider the massless theory. If we add £ D —A,j* to the massive theory,
get 0, A" = p=29,j", so there is only a sensible limit if d,j* = 0, must couple to a
conserved current. Associate with symmetry, 1 — e~ 1), where ¢ is the charge. The
massless theory must be associated with gauge invariance: can make above symmetry
transformations where A = A(z) is a local function, and this is a redundancy, rather than
a symmetry, when combined with 4, — A, + %BM)\(.%), where e is a coupling constant.
Consider minimal coupling: replace 0 — DH* = 9" 4 ieA*q for a charge ¢ field to ensure
that the theory respects gauged version of the symmetry.

Another way to say it: the only way to have a sensible y — 0 limit is if A, is a gauge
field, associated with a local gauge symmetry. The reason is that the operator in brackets
in

(10 (0°0,) — 0,0,]A” =0

is not invertable: it annihilates any function of form d,A. Solution: require that A, ~

A, + 0y, i.e. gauge invariance. The space of gauge fields has equivalent gauge orbits.

1



Minimal coupling examples:

L= —m) = (i — eqhA — m)y.
L = D, ¢*D" ¢ — m?|¢|°.

The first gives a &Auzp Feynman vertex weighted by —ieqy*, and the second gives a
o*(p")AL¢(p) vertex weighted by ieq(p+p’)*, along with a A, A, ¢* ¢ seagull graph weighted
by 2ie?q*g"” (factor of 2 because of the two identical A, fields).

As in the massive vector case, Ay has no kinetic term, can solve its EOM (V - E =
0— V24g+ V- A=0): .

A=
Ao (%) = /d?’f’%.

Gauge fixing: can always choose e.g. 9,A" = 0. Doesn’t entirely fix the gauge. Can still
pick V - A =0 - Coulomb gauge — then Ag = 0. See two polarizations. So take € with
€--p = 0, orthonormal. The completeness relation is similar to that above, except that we

replace p? — |p]2. The propagator is then

4 ; 1.2
This gauge can be a pain in the interacting theory (need to write instantaneous §(x® —
y°)/|% — ] Coulomb interaction). It’s nicer to write something more manifestly Lorentz
invariant.
In the massive vector case, we had the propagator —i(g,, — kuk./|p|?)/(k* — pu? +ie).
In the ;1 — 0 massless gauge theory, gauge invariance ensures that the k,k, term has no
effect in physical, on-shell amplitudes. For example, ete™ — u*pu~ tree-level amplitude,
show that the k,k, term in the propagator doesn’t contribute for on-shell external states.
Another example: Compton scattering of vector off an electron: i A = /\/l“”el(f/)* (K’ )E(VT) (k).
Observe that k¥ M,, = 0, decouples the helicity 0 mode. Also, square amplitude and
average over initial polarizations and sum over the final ones, and note that k¥ M, , and
likewise for k', ensures that the 1/u? terms in the polarization completeness relation go
away.
e Gauge fixing. Try to preserve Lorentz invariance by imposing d,A* = 0, and not

Ap = 0. Can modify £ to get Lorentz gauge EOM. More generally, can consider

1
L=—"F,F"—

4 (614)2,
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and quantize for any parameter «. Popular choices are a = 1 (Feynman) and o = 0
(Landau). Now get 7° = 9L£/d(Ay) = —8,A*/a. Do canonical quantization for all com-
ponents, [A,(Z), 7, (¥)] = i, 0(Z — y). Write plane wave expansion with 4 polarizations,
normalized to € - ! = 77’\>‘/. Get that timelike polarizations create negative norm states.
Can fix this by imposing 8“AZ’\\I!> = 0 on the physical states, along with gauge invariance
relation, to get a physical Hilbert space with positive norms.

Propagator for gauge field is

_i(gw/ + (Oé - 1>kuku/k2>
k2 + ie

PaAM) = [ e |

Again, the k,k, piece will drop out in the end in physical amplitudes. Just need to make
a choice and stick with it consistently. Or keep a as a parameter, and then it’s a good
check on the calculation that the o indeed drops out in the end.

e QED examples:

ete — vy

ete” —ete™:

e y—e 7.

e~ et — e~ eT and the Coulomb potential. Contrast with scalar Yukawa case, where
the potential is always attractive, whereas here opposites attract while like charges repel.

Because here v7%v — +2m, whereas in the scalar case got v —= —2m.



