
12/2 Lecture outline

⋆ Reading: Luke chapter 11. Tong chapter 6

• Last time: massive spin 1 field, with

L = −
1

4
FµνF

µν + 1
2µ

2AµA
µ,

which gives the EOM ∂µF
µν + µ2Aν = 0, and this implies ∂µA

µ = 0; the vector is

transverse, by construction. We quantized the spatial components

[Ai(t, ~x), F
j0(t, ~y)] = iδj

i δ
(3)(~x− ~y)

and obtained the Feynman rules that massive vectors have the momentum space propagator

[

−i(gµν − kµkν/µ
2)

k2 − µ2 + iǫ

]

.

And 〈0|Aµ(x)|V (k, r)〉 = ǫµ(k)re−ikx, so incoming vector mesons have ǫrµ(k) and outgoing

have ǫ∗r(k).

We can couple the massive vector to other fields, e.g. to a fermion via Lint = −gψ̄ /AΓψ,

with Γ = 1 (vector) or Γ = γ5 (axial vector). Gives Feynman rule that a vertex has a

factor of −igγµΓ.

• Now consider the massless theory. If we add L ⊃ −Aµj
µ to the massive theory,

get ∂µA
µ = µ−2∂µj

µ, so there is only a sensible limit if ∂µj
µ = 0, must couple to a

conserved current. Associate with symmetry, ψ → e−iλqψ, where q is the charge. The

massless theory must be associated with gauge invariance: can make above symmetry

transformations where λ = λ(x) is a local function, and this is a redundancy, rather than

a symmetry, when combined with Aµ → Aµ + 1
e
∂µλ(x), where e is a coupling constant.

Consider minimal coupling: replace ∂µ → Dµ = ∂µ + ieAµq for a charge q field to ensure

that the theory respects gauged version of the symmetry.

Another way to say it: the only way to have a sensible µ→ 0 limit is if Aµ is a gauge

field, associated with a local gauge symmetry. The reason is that the operator in brackets

in

[ηµν(∂ρ∂ρ) − ∂µ∂ν ]Aν = 0

is not invertable: it annihilates any function of form ∂µλ. Solution: require that Aµ ∼

Aµ + ∂µλ, i.e. gauge invariance. The space of gauge fields has equivalent gauge orbits.
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Minimal coupling examples:

L = ψ̄(i /D −m)ψ = ψ̄(i/∂ − eq /A−m)ψ.

L = Dµφ
∗Dµφ−m2|φ|2.

The first gives a ψ̄Aµψ Feynman vertex weighted by −ieqγµ, and the second gives a

φ∗(p′)Aµφ(p) vertex weighted by ieq(p+p′)µ, along with a AµAνφ
∗φ seagull graph weighted

by 2ie2q2gµν (factor of 2 because of the two identical Aµ fields).

As in the massive vector case, A0 has no kinetic term, can solve its EOM (∇ · ~E =

0 → ∇2A0 + ∇ · ~̇A = 0):

A0(~x) =

∫

d3~x′
∇ · ~̇A(~x′)

4π|~x− ~x′|
.

Gauge fixing: can always choose e.g. ∂µA
µ = 0. Doesn’t entirely fix the gauge. Can still

pick ∇ · ~A = 0 – Coulomb gauge – then A0 = 0. See two polarizations. So take ~ǫr with

~ǫr · ~p = 0, orthonormal. The completeness relation is similar to that above, except that we

replace µ2 → |~p|2. The propagator is then

〈TAi(x)Aj(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

i(δij − kikj/|~k|
2)

k2 + iǫ

]

.

This gauge can be a pain in the interacting theory (need to write instantaneous δ(x0 −

y0)/|~x − ~y| Coulomb interaction). It’s nicer to write something more manifestly Lorentz

invariant.

In the massive vector case, we had the propagator −i(gµν −kµkν/|µ|
2)/(k2 −µ2 + iǫ).

In the µ → 0 massless gauge theory, gauge invariance ensures that the kµkν term has no

effect in physical, on-shell amplitudes. For example, e+e− → µ+µ− tree-level amplitude,

show that the kµkν term in the propagator doesn’t contribute for on-shell external states.

Another example: Compton scattering of vector off an electron: iA = Mµνǫ
(r′)∗
µ (k′)ǫ

(r)
ν (k).

Observe that kµMµν = 0, decouples the helicity 0 mode. Also, square amplitude and

average over initial polarizations and sum over the final ones, and note that kµMµν , and

likewise for k′, ensures that the 1/µ2 terms in the polarization completeness relation go

away.

• Gauge fixing. Try to preserve Lorentz invariance by imposing ∂µA
µ = 0, and not

A0 = 0. Can modify L to get Lorentz gauge EOM. More generally, can consider

L = −
1

4
FµνF

µν −
1

2α
(∂ ·A)2,
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and quantize for any parameter α. Popular choices are α = 1 (Feynman) and α = 0

(Landau). Now get π0 = ∂L/∂(Ȧ0) = −∂µA
µ/α. Do canonical quantization for all com-

ponents, [Aµ(~x), πν(~y)] = iηµνδ(~x− ~y). Write plane wave expansion with 4 polarizations,

normalized to ǫλ · ǫλ
′

= ηλλ′

. Get that timelike polarizations create negative norm states.

Can fix this by imposing ∂µA+
µ |Ψ〉 = 0 on the physical states, along with gauge invariance

relation, to get a physical Hilbert space with positive norms.

Propagator for gauge field is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν + (α− 1)kµkν/k
2)

k2 + iǫ

]

.

Again, the kµkν piece will drop out in the end in physical amplitudes. Just need to make

a choice and stick with it consistently. Or keep α as a parameter, and then it’s a good

check on the calculation that the α indeed drops out in the end.

• QED examples:

e+e→ γγ:

e+e− → e+e−:

e−γ → e−γ:

e−e∓ → e−e∓ and the Coulomb potential. Contrast with scalar Yukawa case, where

the potential is always attractive, whereas here opposites attract while like charges repel.

Because here v̄γ0v → +2m, whereas in the scalar case got v̄v →= −2m.

3


