12/2 Lecture outline

* Reading: Luke chapter 11. Tong chapter 6

• Last time: massive spin 1 field, with

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\mu^2 A_{\mu}A^{\mu},$$

which gives the EOM $\partial_{\mu}F^{\mu\nu} + \mu^2 A^{\nu} = 0$, and this implies $\partial_{\mu}A^{\mu} = 0$; the vector is transverse, by construction. We quantized the spatial components

$$[A_i(t, \vec{x}), F^{j0}(t, \vec{y})] = i\delta_i^j \delta^{(3)}(\vec{x} - \vec{y})$$

and obtained the Feynman rules that massive vectors have the momentum space propagator

$$\left[\frac{-i(g_{\mu\nu}-k_{\mu}k_{\nu}/\mu^2)}{k^2-\mu^2+i\epsilon}\right].$$

And $\langle 0|A_{\mu}(x)|V(k,r)\rangle = \epsilon_{\mu}(k)^{r}e^{-ikx}$, so incoming vector mesons have $\epsilon_{\mu}^{r}(k)$ and outgoing have $\epsilon^{*r}(k)$.

We can couple the massive vector to other fields, e.g. to a fermion via $\mathcal{L}_{int} = -g\bar{\psi}A\Gamma\psi$, with $\Gamma = 1$ (vector) or $\Gamma = \gamma_5$ (axial vector). Gives Feynman rule that a vertex has a factor of $-ig\gamma^{\mu}\Gamma$.

• Now consider the massless theory. If we add $\mathcal{L} \supset -A_{\mu}j^{\mu}$ to the massive theory, get $\partial_{\mu}A^{\mu} = \mu^{-2}\partial_{\mu}j^{\mu}$, so there is only a sensible limit if $\partial_{\mu}j^{\mu} = 0$, must couple to a conserved current. Associate with symmetry, $\psi \to e^{-i\lambda q}\psi$, where q is the charge. The massless theory must be associated with gauge invariance: can make above symmetry transformations where $\lambda = \lambda(x)$ is a local function, and this is a redundancy, rather than a symmetry, when combined with $A_{\mu} \to A_{\mu} + \frac{1}{e}\partial_{\mu}\lambda(x)$, where e is a coupling constant. Consider minimal coupling: replace $\partial^{\mu} \to D^{\mu} = \partial^{\mu} + ieA^{\mu}q$ for a charge q field to ensure that the theory respects gauged version of the symmetry.

Another way to say it: the only way to have a sensible $\mu \to 0$ limit is if A_{μ} is a gauge field, associated with a local gauge symmetry. The reason is that the operator in brackets in

$$[\eta_{\mu\nu}(\partial^{\rho}\partial_{\rho}) - \partial_{\mu}\partial_{\nu}]A^{\nu} = 0$$

is not invertable: it annihilates any function of form $\partial_{\mu}\lambda$. Solution: require that $A_{\mu} \sim A_{\mu} + \partial_{\mu}\lambda$, i.e. gauge invariance. The space of gauge fields has equivalent gauge orbits.

Minimal coupling examples:

$$\mathcal{L} = \bar{\psi}(i\not\!\!D - m)\psi = \bar{\psi}(i\partial\!\!\!/ - eqA - m)\psi.$$
$$\mathcal{L} = D_{\mu}\phi^*D^{\mu}\phi - m^2|\phi|^2.$$

The first gives a $\bar{\psi}A_{\mu}\psi$ Feynman vertex weighted by $-ieq\gamma^{\mu}$, and the second gives a $\phi^*(p')A_{\mu}\phi(p)$ vertex weighted by $ieq(p+p')^{\mu}$, along with a $A_{\mu}A_{\nu}\phi^*\phi$ seagull graph weighted by $2ie^2q^2g^{\mu\nu}$ (factor of 2 because of the two identical A_{μ} fields).

As in the massive vector case, A_0 has no kinetic term, can solve its EOM ($\nabla \cdot \vec{E} = 0 \rightarrow \nabla^2 A_0 + \nabla \cdot \vec{A} = 0$):

$$A_0(\vec{x}) = \int d^3 \vec{x}' \frac{\nabla \cdot \vec{A}(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|}.$$

Gauge fixing: can always choose e.g. $\partial_{\mu}A^{\mu} = 0$. Doesn't entirely fix the gauge. Can still pick $\nabla \cdot \vec{A} = 0$ – Coulomb gauge – then $A_0 = 0$. See two polarizations. So take $\vec{\epsilon}^r$ with $\vec{\epsilon}_r \cdot \vec{p} = 0$, orthonormal. The completeness relation is similar to that above, except that we replace $\mu^2 \to |\vec{p}|^2$. The propagator is then

$$\langle TA_i(x)A_j(y)\rangle = \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} \left[\frac{i(\delta_{ij} - k_ik_j/|\vec{k}|^2)}{k^2 + i\epsilon}\right].$$

This gauge can be a pain in the interacting theory (need to write instantaneous $\delta(x^0 - y^0)/|\vec{x} - \vec{y}|$ Coulomb interaction). It's nicer to write something more manifestly Lorentz invariant.

In the massive vector case, we had the propagator $-i(g_{\mu\nu} - k_{\mu}k_{\nu}/|\mu|^2)/(k^2 - \mu^2 + i\epsilon)$. In the $\mu \to 0$ massless gauge theory, gauge invariance ensures that the $k_{\mu}k_{\nu}$ term has no effect in physical, on-shell amplitudes. For example, $e^+e^- \to \mu^+\mu^-$ tree-level amplitude, show that the $k_{\mu}k_{\nu}$ term in the propagator doesn't contribute for on-shell external states. Another example: Compton scattering of vector off an electron: $i\mathcal{A} = \mathcal{M}^{\mu\nu}\epsilon^{(r')*}_{\mu}(k')\epsilon^{(r)}_{\nu}(k)$. Observe that $k^{\mu}\mathcal{M}_{\mu\nu} = 0$, decouples the helicity 0 mode. Also, square amplitude and average over initial polarizations and sum over the final ones, and note that $k^{\mu}\mathcal{M}_{\mu\nu}$, and likewise for k', ensures that the $1/\mu^2$ terms in the polarization completeness relation go away.

• Gauge fixing. Try to preserve Lorentz invariance by imposing $\partial_{\mu}A^{\mu} = 0$, and not $A_0 = 0$. Can modify \mathcal{L} to get Lorentz gauge EOM. More generally, can consider

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\alpha} (\partial \cdot A)^2,$$

and quantize for any parameter α . Popular choices are $\alpha = 1$ (Feynman) and $\alpha = 0$ (Landau). Now get $\pi^0 = \partial \mathcal{L}/\partial(\dot{A}_0) = -\partial_\mu A^\mu/\alpha$. Do canonical quantization for all components, $[A_\mu(\vec{x}), \pi_\nu(\vec{y})] = i\eta_{\mu\nu}\delta(\vec{x} - \vec{y})$. Write plane wave expansion with 4 polarizations, normalized to $\epsilon^\lambda \cdot \epsilon^{\lambda'} = \eta^{\lambda\lambda'}$. Get that timelike polarizations create negative norm states. Can fix this by imposing $\partial^\mu A^+_\mu |\Psi\rangle = 0$ on the physical states, along with gauge invariance relation, to get a physical Hilbert space with positive norms.

Propagator for gauge field is

$$\langle TA_{\mu}(x)A_{\nu}(y)\rangle = \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} \left[\frac{-i(g_{\mu\nu} + (\alpha - 1)k_{\mu}k_{\nu}/k^2)}{k^2 + i\epsilon}\right].$$

Again, the $k_{\mu}k_{\nu}$ piece will drop out in the end in physical amplitudes. Just need to make a choice and stick with it consistently. Or keep α as a parameter, and then it's a good check on the calculation that the α indeed drops out in the end.

• QED examples:

$$e^+e \to \gamma\gamma:$$

 $e^+e^- \to e^+e^-:$
 $e^-\gamma \to e^-\gamma:$

 $e^-e^{\mp} \rightarrow e^-e^{\mp}$ and the Coulomb potential. Contrast with scalar Yukawa case, where the potential is always attractive, whereas here opposites attract while like charges repel. Because here $\bar{v}\gamma^0 v \rightarrow +2m$, whereas in the scalar case got $\bar{v}v \rightarrow = -2m$.