
11/7 Lecture outline

⋆ Reading for today’s lecture: Luke chapter VIII

• Finish up from last time: we saw
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where the last factor is p1. For 2 → 2 scattering in the CM frame,
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where we used |~v1 − ~v2| = p1(E
−1
1 + E−2

2 ) = piET /E1E2 in the CM frame, and pi is the

magnitude of the initial momentum, and pf is that of the final momentum.

• Could discuss some interesting things here with the optical theorem etc, but won’t.

Assume it’ll be covered next quarter.

• Next topic (Luke ch. VIII):

• Consider full interacting theory, with Hamiltonian H. Define the true vacuum

|Ω〉 such that H|Ω〉 = 0, and 〈Ω|Ω〉 = 1. The true vacuum of an interacting QFT is a

complicated beast – it can be thought of roughly as a soup of particle-antiparticle states –

it can not be solved for solved for exactly, but that’s generally OK. (Progress: in classical

mechanics, can solve 2 body problem exactly, but ≥ 3 body only approximately; in GR,

can solve 1 body problem exactly, but ≥ 2 body only approximately; in QM can generally

solve even only 1-body problem only approximately, but at least the 0-body problem is

trivial; in QFT, even the 0-body problem is not exactly solvable.)

Define Green functions or correlation functions by

G(n)(x1, . . . xn) = 〈Ω|TφH(x1) . . . φH(xn)|Ω〉,
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where φH(x) are the full Heisenberg picture fields, using the full Hamiltonian.

Now show that

G(n)(x1 . . . xn) =
〈0|Tφ1I(x1) . . . φnI(xn)S|0〉

〈0|S|0〉 ,

where |0〉 is the vacuum of the free theory, and φiI are interaction picture fields, and

the S in the numerator and denominator gives the interaction-Hamiltonian time evolution

from −∞ to xn, then from xn to xn−1 etc and finally to t = +∞. To show it, take

t1 > t2 . . . > tn and put in factors of UI(ta, tb) = T exp(−i
∫ tb
ta

HI) to convert φI to φH ,

using φH(xi) = UI(ti, 0)
†φI(xi)UI(ti, 0). Get 〈0|UI(∞, t1)φH(t1) . . . φH(tn)UI(tn,−∞)|0〉,

and UI at ends can be replaced with full U(t1, t2), since H0|0〉 = 0 anyway. Now use

〈Ψ|U(t,−∞)|0〉 = 〈Ψ|U(t,−∞)

(
|Ω〉〈Ω|+

∑∫
|n〉〈n|

)
|0〉

= 〈Ψ|Ω〉〈Ω|0〉+ lim
t′→−∞

∑∫
eiEn(t′−t)〈Ψ|n〉〈n|0〉

= 〈Ψ|Ω〉〈Ω|0〉

where 1 was inserted as a complete set of states, including the vacuum and single and

multiparticle states, including integrating over their momenta, but the wildly oscillating

factor kills all those terms. (Riemann-Lebesgue lemma: limt→∞

∫
dωf(ω)eiωt = 0 for nice

f(ω)) The result follows upon doing the same for the denominator.

The 〈0|S|0〉 in the denominator eliminates the vacuum bubble diagrams. So we have

G(n)(x1, . . . xn) =
∑

Feynman graphs without vacuum bubbles.

• Example: G(4)(x1, x2, x3, x4) in λφ4/4! theory. For each line from x to y, get a factor

of ∆F (x−y), and for each vertex at y get −iλ
∫
d4y. Includes connected and disconnected

diagrams. Disconnected ones will go away when computing S-matrix elements.

• It’s more convenient often to work in momentum space,

G̃(n)(p1, . . . pn) =

∫ n∏

i=1

d4xie
−ipixiG(n)(x1 . . . xn).

Similar to what we computed before to get S-matrix elements, but the external legs

include their propagators, and the external momenta are not on-shell.
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• From Green functions G̃(n)(p1, . . . , pn), computed with external leg propagators,

allowed to be off-shell, to S-matrix elements. E.g.

〈k3, k4|S − 1|k1k2〉 =
4∏

n=1

k2n −m2
n

i
√
Z

G̃(−k3,−k4, k1, k2),

where the factors are to amputate the external legs. Consider for example G̃(4)(k1, k2, k3, k4)

for 4 external mesons in our meson-nucleon toy model. The lowest order contribution is

at O(g0) and is

(2π)4δ(4)(k1 + k4)
i

k21 − µ2 + iǫ
(2π)4δ(4)(k2 + k3)

i

k22 − µ2 + iǫ
+ 2 permutations.

This is the −1 that we subtract in S − 1, and indeed would not contribute to 2 → 2

scattering using the above formula, because it is set to zero by
∏4

n=1(k
2
n −m2

n) when the

external momenta are put on shell. To get a non-zero result, need a G̃(4) contribution with

4 external propagators, which we get e.g. at O(g4) with an internal nucleon loop.

• Account for bare vs full interacting fields. Let |k〉 be the physical one-meson state

of the full interacting theory, normalized to 〈k′|k〉 = (2π)32ωkδ
(3)(~k′ − ~k). Then

〈k|φ(x)|Ω〉 = 〈k|eiP ·xφ(0)e−iP ·x|Ω〉 = eik·x〈k|φ(0)|Ω〉 ≡ eik·xZ
1/2
φ .

Can rescale the fields, s.t. 〈k|φR(x)|Ω〉 = e−ik·x. The LSZ formula is:

〈q1 . . . qn|S − 1|k1 . . . km〉 =
n∏

a=1

q2a −m2
a

i
√
Z

m∏

b=1

k2b −m2
b

i
√
Z

G̃(n+m)(−q1, . . .− qn, k1, . . . km),

where the Green function is for the Heisenberg fields in the full interacting vacuum.
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