
10/15 Lecture outline

⋆ Reading for today’s lecture: Luke p. 65-80; Tong p. 35-41.

• Last time:

φ(x) =

∫

d3k

(2π)32ω(k)
[a(k)e−ikx + a†(k)eikx] ≡ φ+(x) + φ−(x)

where φ± are positive / negative frequency. Historically, first attempt was to keep just φ+

and regard it as a quantum wavefunction, ψ, with probability ∼ |ψ|2. As we saw last time,

[φ(x), φ(y)] = 0 for (x− y)2 < 0, but that wouldn’t have been true for just φ+(x), so there

would be information propagating outside the light cone. Moreover, neither |φ|2 nor |φ+|2

can be interpreted as a conserved probability – the relativistic expression E =
√

~p2 +m2

necessarily leads to particle productions. So instead we interpret φ as similar to ~x in QM,

as a hermitian operator, not a wavefunction.

We showed that [φ(x), φ(y)] = D1(x− y)−D1(y − x), where

〈0|φ(x)φ(y)|0〉 = D1(x− y) ≡

∫

d3k

(2π)32ω(k)
e−ik(x−y).

Note that the commutator is a c-number, not an operator. Today, we’ll introduce the

Feynman propagator, and see that the negative energy solution E− = −
√

~p2 +m2 can

roughly be thought of as being for anti-matter, traveling backwards in time!

• Consider L = 1
2∂φ

2 − 1
2m

2φ2 − ρφ, where ρ is a classical source. Solve by φ =

φ0 + i
∫

d4yD(x− y)φ(y), where φ0 is a solution of the homogeneous KG equation and the

green’s function D(x− y) satisfies

(∂2x +m2)D(x− y) = −iδ4(x− y).

By a F.T., get

D?(x− y) =

∫

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√

~k2 +m2. There are choices about whether the contour goes above or below the

poles, and that’s what the ? label indicates.

• Going above both poles gives the retarded green’s function, DR(x−y) which vanishes

for x0 < y0. Considering x0 > y0, get that

DR(x− y) = θ(x0 − y0)

∫

d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D(x− y)−D(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,
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where

D(x− y) =

∫

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

This is reasonable: then the ρ(y) source only affects φ(x) in the future.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator: go above the k0 = Ek pole and below the k0 = −Ek pole.

−Ek pole is heuristically the anti-matter, traveling backward in time. Show that this gives

DF = θ(x0 − y0)D1(x− y) + θ(y0 − x0)D1(y − x).

Now show

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{

〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y),

where ǫ → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. We’ll see that this ensures causality.

• Here’s how to remember it: the pole placement is such that the contour can be

rotated to be along the imaginary k0 axis, running from −i∞ to +i∞. This will later tie

in with a useful way to treat QFT, by going to Euclidean space via imaginary time. It

is something of a technical trick, but there is also something deep about it. Analyticity

properties of amplitudes is deeply connected with causality. More later.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator. Let e.g. φ(x) = φ+(x) + φ−(x), where φ+ is the term with

annihilation operators and φ− is the one with creation operators (using Heisenberg and

Pauli’s reversed-looking notation). Then for x0 > y0 the contraction is [A+, B−], and for

y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).
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