10/15 Lecture outline
* Reading for today’s lecture: Luke p. 65-80; Tong p. 35-41.

e Last time:
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where ¢ are positive / negative frequency. Historically, first attempt was to keep just ¢+
and regard it as a quantum wavefunction, 1, with probability ~ [1|?. As we saw last time,
[#(x), ¢p(y)] = 0 for (x —y)? < 0, but that wouldn’t have been true for just ¢ (x), so there
would be information propagating outside the light cone. Moreover, neither |¢|? nor |¢T|?
can be interpreted as a conserved probability — the relativistic expression £ = \/m
necessarily leads to particle productions. So instead we interpret ¢ as similar to & in QM,

as a hermitian operator, not a wavefunction.

We showed that [¢(z), ¢(y)] = D1(z —y) — D1(y — x), where
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Note that the commutator is a c-number, not an operator. Today, we’ll introduce the
Feynman propagator, and see that the negative energy solution F_ = —\/]m can
roughly be thought of as being for anti-matter, traveling backwards in time!

e Consider L = %8(1)2 — %m2¢>2 — p¢, where p is a classical source. Solve by ¢ =
do+1 [ d*yD(x —y)é(y), where ¢y is a solution of the homogeneous KG equation and the

green’s function D(x — y) satisfies

(05 +m*)D(x —y) = —id* (z — y).
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Consider the kg integral in the complex plane. There are poles at kg = 4wy, where
wr = +V k2 + m2. There are choices about whether the contour goes above or below the
poles, and that’s what the 7 label indicates.

By a F.T., get

e Going above both poles gives the retarded green’s function, Dg(z—y) which vanishes

for xg < yo. Considering xy > g, get that
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= 0(xo —yo)(D(x —y) — D(y — z)) = 0(zo — yo){[P(x), d(y)]),
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where
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This is reasonable: then the p(y) source only affects ¢(x) in the future.
Going below both poles gives the advanced propagator, which vanishes for yg < xg.
e Feynman propagator: go above the kg = Ej pole and below the ky = —FEj pole.

—E}, pole is heuristically the anti-matter, traveling backward in time. Show that this gives
Dp = 0(zo — yo)D1(z — y) + 0(yo — z0) D1 (y — ).

Now show
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Here T' means to time order: order operators so that earliest is on the right, to latest on
left. Object like (T'¢(x1)...¢(x,)) will play a central role in this class. Time ordering
convention can be understood by considering time evolution in (¢¢|t;). Evaluate Dp(x —y)

by going to momentum space:
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where ¢ — 07 enforces that we go below the —w;, pole and above the +wy pole, i.e. we
get D(z —y) if g > yo, and D(y — x) if xg < yo, as desired from the definition of time
ordering. We’ll see that this ensures causality.

e Here’s how to remember it: the pole placement is such that the contour can be
rotated to be along the imaginary kg axis, running from —ioco to +i00. This will later tie
in with a useful way to treat QFT, by going to Euclidean space via imaginary time. It
is something of a technical trick, but there is also something deep about it. Analyticity
properties of amplitudes is deeply connected with causality. More later.

e Define contraction of two fields A(x) and B(y) by T(A(x)B(y))— : A(x)B(y) :. This
is a number, not an operator. Let e.g. ¢(z) = ¢ (x) + ¢~ (z), where ¢T is the term with
annihilation operators and ¢~ is the one with creation operators (using Heisenberg and
Pauli’s reversed-looking notation). Then for 2% > y° the contraction is [AT, B~], and for
y? > 2% it is [BT, A7]. So can put between vacuum states to get that the contraction is
(TA(x)B(y)). For example, in the KG theory the contraction of ¢(z) and ¢(y) is Dp(z—y).



