Mechanical Waves

Ken Intriligator's week 2 lectures, Oct 7, 2013

Traveling wave

Standing wave

Osc. direction vs

energy transport dir.

The subsequent direction of motion of individual particles of a medium is the same as the direction of vibration of the source of the disturbance.
E.g. earthquakes: primary (fastest traveling) wave is longitudinal, secondary (slower traveling) wave is transverse. The second is often more damaging.

Periodic waves

In both space and time.

(angular) frequency

wave number

Like SHO, A is the amplitude

$$
\begin{array}{ll}
y(t, x=0)=A \cos (\omega t) & y(t+T, x)=y(t, x) \\
y(t=0, x)=A \cos (k x) & y(t, x+\lambda)=y(t, x)
\end{array}
$$

$$
\text { e.g. } \quad y(t, x)=A \cos (k x-\omega t)
$$

$$
\longleftarrow \text { Traveling wave }
$$

$$
y(t, x)=A \cos (k x) \cos (\omega t) \longleftarrow \text { Standing wave }
$$

Traveling wave case

Left moving: $y(t, x)=A \cos (k x+\omega t)$
More gen'ly: $\quad \psi(\vec{x}, t)=A \cos (\vec{k} \cdot \vec{x}-\omega t) \quad|\vec{k}|=2 \pi / \lambda$
Vector k points in the dir. the wave (its energy) is going.
Phase velocity (speed) of wave: $d(k x-\omega t)=k d x-\omega d t=0$

$$
v_{p}=\frac{d x}{d t}=\frac{\omega}{k}=\frac{\lambda}{T}
$$

Aside:"group velocity"

For later, general case: $\omega=\omega(\vec{k})$ "dispersion relation"
Dispersion rel'n function depends on the wave type and medium.
E.g. deep water waves: $\omega_{\text {deep water }} \approx \sqrt{g k}$

$$
v_{\text {group }} \equiv \frac{d \omega}{d k}
$$

We'll discuss the physical distinction between them later.

D.A. quiz question MASS, LENGTH, TIME

Want to make a velocity, using only g , lambda and maybe the density rho. Velocity has units of length over time. Lambda has units of length g has units of length over time-squared. rho has units of mass over length-cubed. The units do not allow rho to enter, since no way to cancel its mass. Velocity units can be obtained only as

$$
v \sim \sqrt{g \lambda} \sim \sqrt{\frac{g}{k}}
$$

$$
\longrightarrow\left(v_{2} / v_{1}\right)=\sqrt{g_{2} \lambda_{2} / g_{1} \lambda_{1}}
$$

Standing waves

=Superdosition of left + right moving wave

Here, person makes right moving wave, and the B.C. at the other end reflects it back, total is standing wave
$A \cos (k x-\omega t)+A \cos (k x+\omega t)=2 A \cos (k x) \cos (\omega t)$
To the right + To the left $=$ "Standing" useful trig. $\quad \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$ identities: $\quad \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$

Wave equation

Id: $\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi(t, x)=0 \quad$ Linear 2nd order PDE
DA: Same units. Correct!
$3 \mathrm{~d}:\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \psi(t, x)=0$ We'll discuss 3d case later. $_{\text {This week, just Id waves. }}$
Examples solutions of the Id wave equation. $\psi(t, x)=A \cos (k(x+v t)) \longleftarrow$ Superpose for general $\psi(t, x)=A \cos (k x) \cos (k v t) \quad$ solution (Fourier).

(Aside: Fourier)

Math statement: get general functions from a sum (superposition) of sin or cos functions. Physics application: get general solution of the wave equation from a superposition of waves of definite frequency and wavelength

Wave equation, cont.

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi(t, x)=0
$$

Is solved by: $\quad \psi=\psi_{R}(x-v t)+\psi_{L}(x+v t)$
Arbitrary functions for right and left moving parts.

E.g. right moving $y(t, x)=A \cos (k x-\omega t)$

Velocity (speed) is the phase velocity:

$$
v=\frac{\omega}{k}=\frac{\lambda}{T}
$$

Waves on a string

Acceleration in y direction, for fixed position $x: \quad \overline{\partial t^{2}}$

Acceleration felt e.g. by an ant at position x .
Segment of string from x to $x+d x$ has mass: $\mu d x$

Derive wave eqn.

Follows from $F=m a$, applied to string elements.

Wave energy, power

Force exerted on string to

 the right, by the string to the leftMethod I:
$P(x, t)=\vec{F}(x, t) \cdot \vec{v}(x, t)=F_{y}(x, t) v_{y}(x, t)=-\tau \frac{\partial y}{\partial x} \frac{\partial y}{\partial t}$
Method 2: $k(x, t)=\frac{1}{2} \mu\left(\frac{\partial y}{\partial t}\right)^{2} \quad u(x, t)=\frac{1}{2} \tau\left(\frac{\partial y}{\partial x}\right)^{2} \begin{gathered}\text { energy } \\ \text { densities }\end{gathered}$
$P=\frac{d E}{d t}=\frac{d E}{d x} \frac{d x}{d t}=(k+u) v$
Both methods give the same answer (using the wave eqn):

Wave power, cont.

$$
\begin{gathered}
P(x, t)=\vec{F}(x, t) \cdot \vec{v}(x, t)=F_{y}(x, t) v_{y}(x, t)=-\tau \frac{\partial y}{\partial x} \frac{\partial y}{\partial t} \\
P=A \cos (k x-\omega t) \\
P=\tau k \omega A^{2} \sin ^{2}(k x-\omega t) \quad \tau k \omega=\frac{\tau}{v} \omega^{2}=\sqrt{\tau \mu} \omega^{2} \\
P_{\max }=\sqrt{\tau \mu} \omega^{2} A^{2} \quad \text { and } \quad P_{a v e}=\frac{1}{2} \sqrt{\tau \mu} \omega^{2} A^{2} \\
P_{a v e}=\frac{1}{2} P_{\max } \quad \text { since } \quad\left\langle\sin ^{2} \theta\right\rangle=\left\langle\cos ^{2} \theta\right\rangle=\frac{1}{2}
\end{gathered}
$$

3d wave, intensity

Intensity = I = energy flux, i.e. energy flow per area, per time. In 3d, I drops as distance r-squared, since energy is conserved and area grows as r-squared.

$$
\begin{gathered}
I=P / 4 \pi r^{2} \\
I_{1} / I_{2}=r_{2}^{2} / r_{1}^{2}
\end{gathered}
$$

E.g. 60 W bulb emits $\mathrm{P}=60 \mathrm{~W}$, intensity of the light drops as $I / r^{\wedge} 2$, since light spreads out.

Play / tune your guitar

Fingers shorten string length, shorter length $=$ higher frequency.

Bass: fatter + longer strings = lower frequency.

Tune: tighten the knobs (increase tension) to get higher frequency.

String waves, modes

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) y(t, x)=0 .
$$

Ends,

$$
y(t, 0)=y(t, L)=0
$$

BCs:

Fundamental higher harmonics
The wave eqn mode
+B.C. solution:

$$
y(t, x)=A \sin \left(\frac{n \pi x}{L}\right) \cos \left(\omega_{n} t\right)
$$

$\omega_{n}=v k_{n}=n \omega_{1} \quad \omega_{1}=\sqrt{\frac{\tau}{\mu}} \frac{\pi}{L}$

$$
\left(k_{n} \equiv \frac{2 \pi}{\lambda_{n}}=\frac{n \pi}{L}\right)
$$

Tune your guitar! More bass (lower freq) from fatter or longer strings. Higher freq. from more tension.

Harmonics

$$
\begin{aligned}
& \mathbf{n}=1 \text { "fundamental" } \\
& \mathbf{n}=2,(I \text { node }) \\
& \mathbf{n}=3 \quad \text { (} \mathbf{n} \text { - } \text { nodes }) \\
& \lambda_{n}=2 L / n \quad\left(k_{n} \equiv \frac{2 \pi}{\lambda_{n}}=\frac{n \pi}{L}\right) \\
& \omega_{n}=v k_{n}=n \omega_{1} \quad \omega_{1}=\sqrt{\frac{\tau}{\mu}} \frac{\pi}{L} \quad \omega \equiv 2 \pi f \equiv 2 \pi \nu
\end{aligned}
$$

Wave B.C.s at the ends:

 Two common choices:Fixed (Dirichlet): $\quad y\left(t, x_{\text {end }}\right)=0$
Free (Neumann): $\quad \frac{\partial y}{\partial x}\left(t, x_{\text {end }}\right)=0$

Fixed (Dirichlet)

Free (Neumann)

Free ends case, sol'n:

Suppose free ends at $x=0$, and $x=L$

$$
\begin{aligned}
& \frac{\partial y}{\partial x}(t, 0)=\frac{\partial y}{\partial x}(t, L)=0 \\
& y=A \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi v t}{L}\right)
\end{aligned}
$$

Fixed ends (few slides ago): this cos was instead sin. The harmonics are similar in the two cases.

Free ends harmonics

Slope $=0$ at ends

$$
\lambda=L
$$

$$
\lambda=2 L / 3
$$

$$
\begin{gathered}
\ldots \quad \lambda_{n}=2 L / n \\
f_{n}=T_{n}^{-1}=v / \lambda_{n}=n v / 2 L
\end{gathered}
$$

Just for fun: string theory!

Similar wave equation. Different harmonics are different particles. Known particles are the fundamental harmonic, others would be new particles.

