
10/1 Lecture outline

⋆ Reading for today’s lecture: Coleman lecture 0 and 1, Luke chapter 1,

Tong chapter 0 and 1.

• Relativistic QM? In QM we have ψ(~x, t) = 〈x|e−iHt/h̄|ψ〉, with ~x the eigenvalue of

an operator, vs t a parameter – different treatment of space and time problematic with

relativity. Also
∫

d3~x|ψ|2 = 1 expresses particle conservation, which is not true in nature,

e.g. p+ p→ lots of stuff at the LHC. Particle number can change; can’t have a relativistic

single particle QM. Let λc ≡ h̄/mc be the Compton wavelength, as opposed to λDB ≡ h/p.

E.g. for an electron get λc ∼ 4×10−11cm≪ 1Å. Ordinary QM ≈ OK when λDB ≫ λc, i.e.

non-relativisitic velocities. Particle creation when we try to localize on distances L ∼ λc.

Issues: Can’t define ~Xop or |~x〉. In QM treat ~X as an operator and t as a parameter,

in a relativistic theory they must be treated symmetrically. In QM, observables, e.g. Lz,

aren’t attached to their location, so can have problems with causality. Want something

like [O1(x1), O2(x2)] = 0 for spacelike separations, (x1 − x2)
2 < 0.

• Solution: quantum field theory. Each elementary particle, e.g. electron, is replaced

with fluctuations of a local field φ(xµ). We treat xµ = (t, ~x) as parameters, quantize φ

rather than xµ. Agrees with the fact that all electrons are the same. Whether here or

on the other side of the universe, electrons are the same kind of blip of the electron field,

which fills the universe.

• Conventions: h̄ = c = 1, mostly minus metric gµν , e.g. ∂µ = (∂t, ~∇), ∂µ∂
µ ≡ ∂2 =

∂2t − ∇2.

• Recall from QM: [qr, ps] = ih̄δrs. Momentum eigenstates |~p〉, s.t. 〈~p|~p′〉 = δ~p,~p′ ,

form a complete basis for 1-particle Hilbert space, 1 =
∫

d3~p
(2π)3 |~p〉〈~p|. Position eigenstates

~X|~x〉 = ~x|~x〉, and 〈~x|~p〉 = Cei~p·~x/h̄, where C is a conventional normalization coefficient,

e.g. take C = (2π)−3/2. Note that ei
~P ·~a/h̄ generates spatial translations: |~x + ~a〉 =

ei
~P ·~a|~x〉. Note that e−iHa0/h̄ generates time translations, e−iHa0/h̄|ψ(t)〉 = |ψ(t + a0)〉.

These statements already show some Lorentz invariance: e−iPa/h̄ generates space-time

translations. In position space, we replace Pµ → ih̄∂µ, so the plane-wave eigenstates are

〈~x|e−iHt/h̄|~p〉 = Ceipx/h̄.

• We’ll see that we’ll keep some of this structure, in particular momentum eigenstates,

but have to trash the notion of position eigenstates. As a technical point, we’ll need to

change our normalization of the momentum eigenstates to work with Lorentz-invariant
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quantities. Note that d4kδ(k2−m2)θ(k0) → d3k
2ω(k)

upon doing the k0 integral. So normalize

〈k′|k〉 = (2π)32ω(k)δ3(~k − ~k′), with |k〉 ≡
√

(2π)32ωk|~k〉.
• Q: “What goes wrong if we just do the single-particle S.E. with Hrel =

√

~p2 +m2?”

A: many things. One question is how to make sense of H =
√

~P 2 +m2, where ~P is an

operator. How do you take a square-root of an operator? This question led Dirac to his

equation, which describes fermions. Requires anti-matter to make sense of it. Can’t have

well-defined single-particle states. Here let’s illustrate another issue: correlators outside

the forward light-cone. Recall that any point outside the light-cone can be mapped by

a Lorentz transformation to any other point, and that signals sent outside the light-cone

can then be used to transmit information back in time, violating causality. As far as we’re

aware, that is illegal. Here’s how to show it:

Start with |ψ(t = 0)〉 = |~x = 0〉. Compute

〈~x|ψ(t)〉 = 〈~x|e−iHt|~x = 0〉 =
∫

d3p

(2π)3
ei~p·~xe−i

√
~p2+m2t

= − i

(2π)2r

∫

∞

−∞

pdpeipre−i
√

p2+m2t

=
ie−mr

2π2r

∫

∞

m

dzze−(z−m)r sinh(
√

z2 −m2t)

The last step is by deforming the contour in the complex p plane, and getting contributions

along the branch cut in the UHP, with z = −ip; the contribution along the big semi-circle

at infinity vanishes for r > t. The integral is positive, so non-vanishing outside the forward

light cone: acausal, with causality recovered as an approximation for r ≫ m. In QFT,

the difference will be antiparticles to the rescue! The antiparticle contribution is added,

and cancels the acausality. Must give up on purely single-particle states in the relativistic

quantum realm.
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