11/9 Lecture outline

* Reading for today’s lecture: Coleman lecture notes pages 140-175.

e Brief introduction to a better description of QFT and perturbation theory. |Define
the true vacuum |Q2) such that H|Q2) = 0, and (Q|Q2) = 1. The true vacuum of an interacting
QFT is a complicated beast — it can be thought of roughly as a soup of particle-antiparticle
states — it can not be solved for solved for exactly. (Progress: in classical mechanics, can
solve 2 body problem exactly, but > 3 body only approximately; in GR, can solve 1 body
problem exactly, but > 2 body only approximately; in QM can generally solve even only
1-body problem only approximately, but at least the 0-body problem is trivial; in QFT,
even the 0-body problem is not exactly solvable.)

Define Green functions or correlation functions by

G (@1, 2n) = (AUTPu(z1) ... pp(2n)|Q),

where ¢ (x) are the full Heisenberg picture fields, using the full Hamiltonian.

Now show that

G (zy...2p) = 050) ,

where |0) is the vacuum of the free theory, and ¢;; are interaction picture fields, and
the S in the numerator and denominator gives the interaction-Hamiltonian time evolution
from —cc to x,, then from x, to z,_; etc and finally to ¢t = +o0. To show it, take
t1 > ty... > t, and put in factors of Uj(t,,tp) = T exp(—1i ftib Hj) to convert ¢; to ¢,
using ¢ (z;) = Ur(t;,0) o1 (x;)Ur(;,0). Get (0|Ur(00,t1)dr(t1) ... ¢u(tn)Us(t,, —00)[0),
and Ur at ends can be replaced with full U(¢y,t2), since Hp|0) = 0 anyway. Now use

(U1, —00)]0) = ([T (1, —o0) (|Q><Q| > \n><n\) 0)

— (@R)(@0) + tim 3 [P0 (W)l

= (V|2)(€2/0)

where 1 was inserted as a complete set of states, including the vacuum and single and
multiparticle states, including integrating over their momenta, but the wildly oscillating
twt

factor kills all those terms. (Riemann-Lebesgue lemma: lim; o [ dwf(w)e™* = 0 for nice

f(w)) The result follows upon doing the same for the denominator.
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The (0]S]|0) in the denominator eliminates the vacuum bubble diagrams. So we have
G™ (2q,...2n) = Z Feynman graphs without vacuum bubbles.

e Example: G (z1, 2, 23, 14) in A¢? /4! theory. For each line from z to y, get a factor
of Ap(z—y), and for each vertex at y get —i) [ d*y. Includes connected and disconnected
diagrams. Disconnected ones will go away when computing S-matrix elements.

e It’s more convenient often to work in momentum space,

G (py, .. /Hd4x e~ PTG (1. xy,).

Similar to what we computed before to get S-matrix elements, but the external legs
include their propagators, and the external momenta are not on-shell.
e From Green functions G (p1,--.,pPn), computed with external leg propagators,

allowed to be off-shell, to S-matrix elements. E.g.

— m?2

4 ]{72
(ks, kS — Lkiko) = [ | %
n=1

G(—ks, —k4, ki1, ko),
\/2 ( 3 4 1 2)

where the factors are to amputate the external legs. Consider for example G@ (K1, ko, ks, k4)l

for 4 external mesons in our meson-nucleon toy model. The lowest order contribution is

at O(g°) and is

(27)46™ (ky + ky)— (2m)*6™ (kg + ks) + 2 permutations.

k3 — p? + ie k3 — pu? + ie
This is the —1 that we subtract in S — 1, and indeed would not contribute to 2 — 2
scattering using the above formula, because it is set to zero by H (k2 —m?) when the
external momenta are put on shell. To get a non-zero result, need a G® contribution with
4 external propagators, which we get e.g. at O(g*) with an internal nucleon loop.

e Account for bare vs full interacting fields. Let |k) be the physical one-meson state
of the full interacting theory, normalized to (k'|k) = (27)32w,6® (K’ — k). Then

(kl6(2)[Q) = (ke ¢(0)e™7|Q) = e (k|(0)|Q) = e 2,/

Can rescale the fields, s.t. (k|¢g(z)|Q) = e~ The LSZ formula is:

H ﬁ mbG(n—i-m)( "'_qn7k17---km)7
a=1 b=1
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where the Green function is for the Heisenberg fields in the full interacting vacuum.
To derive the LSZ formula, consider wave packets, with some profile F(k), and f(z) =

J (2ﬂ)32wk (k)e~ = where we define ko = \/k2+ 2, so f(z) solves the KG equation.
Now define

ol (t) = i / BEGE, )00 f (F,1) — (T, )06d(F, 1)),

Note that, since f(x) satisfies the KG equation, can show
i [ ates@)e+ o) = — [dig o (1) = 6 (0%

(Sign choice nice for making in states.) Show that ¢/ () makes single particle wave
packets from the vacuum, (k|¢/(¢)|Q) = F(k). Can similarly show (because of a rela-
tive minus sign), (Q|¢/(t)|k) = 0, and (n|¢f (1)|Q) = “”’Z&F( )€ _i(wpn_pg)t<n|¢(0)§2),
where w, = +/P2 +p2, which has w, < p? for any multiparticle state. So
limy 400 (V|07 (1)) = (b|f) + 0, where the multiparticle states contributions sum to
zero using the Riemann-Lebesgue lemma.

Make separated in states: |f,) = [] ¢/ (t,)|2), and out states { f,n| = (| [T(¢/™) (tm) ]}

with ¢,, — —oo and t,,, = +00. Then show
<fm|S_ 1|fn = /Hd4xnfn xn Hd4xmfm xm 1_‘[Z a2+m )G(xn:xm>

Take f;(z) — e~ at the end. Show that all the ¢ — 400 do the right thing to give the

in and out states, thanks to various cancellations, using lim;_, . (¥|¢7 (£)|Q) = (¥|f).

e On to fermions! Consider more generally Lorentz transformations. Under lorentz
transformations z# — x# = AFz¥, scalar fields transform as ¢(z) — ¢/(z) = d(A~1x).
Vector fields transform as A* — A#AY(A~'x). Generally, ¢ — D[A]¢¢°(A~1x), where
DIA] is a rep of the Lorentz group, D[A1]D[A3] = D[A1As].



