
10/7 Lecture outline

⋆ Reading for today’s lecture: Coleman to end of lecture 4 (p. 37).

• Last time: write

φ(x) = φ+(x) + φ−(x),

with (backwards looking Heisenberg / Pauli notation)

φ+(x) ≡

∫

d3k

(2π)32ω(k)
a(k)e−ikx, φ−(x) ≡

∫

d3k

(2π)32ω(k)
a(k)†eikx

and [a(k), a†(k′)] = (2π)32ωkδ
3(~k − ~k′) where φ± are positive / negative frequency. His-

torically, first attempt was to keep just φ+ and regard it as a quantum wavefunction, ψ,

with probability ∼ |ψ|2. Doesn’t work.

Define normal ordering : AB : for operators A and B: the terms are arranged so that

the annihilation operators are on the right, so annihilates the vacuum, e.g. : φ+(x)φ−(y) :=

φ−(y)φ+(x). Take

H ≡: H :=

∫

d3k

(2π)2(2ω)
ωa†(~k)a(~k),

~P ≡: ~P :=

∫

d3k

(2π)2(2ω)
~ka†(~k)a(~k).

We’re dropping the CC contributing term in H, as discussed last time. So Pµ|0〉 = 0 and

Pµ|p1 . . . pn〉 = p
µ
tot|p1 . . . pn〉, where |p1 . . . pn〉 =

∏

n a
†(kn)|0〉 and p

µ
tot =

∑

n p
µ
n.

• Last time: two-point field correlation function:

〈0|φ(x)φ(y)|0〉 ≡ D1(x− y) =

∫

d3k

(2π)32ω(k)
e−ik(x−y).

Note also that 2i∂x0D(x− y) is the integral that we saw in last lecture, for the probability

amplitude to find a particle having traveled with spacetime displacement (x − y)µ. For

spacelike separation, (x−y)2 = −r2, we here get D(x−y) = m
2π2r

K1(mr), with K1 a Bessel

function. Recall that the Bessel function has a simple pole when its argument vanishes, and

exponentially decays at infinity. So D(x − y) ∼ exp(−m|~x − ~y|) is non-vanishing outside

the forward light cone. We will soon discuss how to construct physical observables, like

S-matrix elements, from squaring amplitudes, and how to construct amplitudes from field

correlation functions. For the moment, suffice it to say that the above above correlator is

not directly a physical observable, and having it not vanish outside the light cone does not

imply any a-causality.
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• Causality? There could be observable effects, from interference, if a commutator

of fields is non-vanishing outside of the lightcone. Let’s show that this does not happen.

Note that

[φ(x), φ(y)] = [φ+(x), φ−(y)] + [φ−(y), φ+(x)] =

=

∫

d3k

(2π)32ω(k)

∫

d3k′

(2π)32ω(k′)
[a(k), a†(k′)]e−ikx+ik′y − (x↔ y)

Note that the commutator is a c-number, not an operator:

[φ(x), φ(y)] = D1(x− y)−D1(y − x),

where D1(x−y) is as defined above. For spacelike separation, (x−y)2 = −r2, D1(x−y) =
m

2π2r
K1(mr), with K1 a Bessel function. For spacelike separation, we can map (x − y)µ

to −(x − y)µ by a Lorentz transformation, so D1(x − y) − D1(y − x) = 0. Good. The

commutator is non-vanishing for timelike separation.

Note that [φ(x), φ(y)] = 0 for (x − y)2 < 0, wouldn’t have been true for just φ+(x),

so there would be information propagating outside the light cone. Moreover, neither |φ|2

nor |φ+|2 can be interpreted as a conserved probability – the relativistic expression E =
√

~p2 +m2 necessarily leads to particle productions. So instead we interpret φ as similar

to ~x in QM, as a hermitian operator, not a wavefunction.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2
m2φ2 + λφ4,

treat 2nd term as a perturbation. We can consider perturbative solutions in both classical

or quantum field theory. The starting point is the green’s function for the theory with a

forcing function source:

• Consider L = 1
2
∂φ2 − 1

2
m2φ2 − ρφ, where ρ is a classical source. Solve by φ =

φ0 + i
∫

d4yD(x− y)φ(y), where φ0 is a solution of the homogeneous KG equation and the

green’s function D(x− y) satisfies

(∂2x +m2)D(x− y) = −iδ4(x− y).

By a F.T., get

D?(x− y) =

∫

?

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√

~k2 +m2. There are choices about whether the contour goes above or below the

poles, and that’s what the ? label indicates.
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• Going above both poles gives the retarded green’s function, DR(x−y) which vanishes

for x0 < y0. Considering x0 > y0, get that

DR(x− y) = θ(x0 − y0)

∫

d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D1(x− y)−D1(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,

where D1(x− y) is as defined above. This is reasonable: the ρ(y) source only affects φ(x)

in the future.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator: go above the k0 = Ek pole and below the k0 = −Ek pole.

−Ek pole is heuristically the anti-matter, traveling backward in time. Show that this gives

DF = θ(x0 − y0)D1(x− y) + θ(y0 − x0)D1(y − x).

Now show

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{

〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y),

where ǫ → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. We’ll see that this ensures causality.

• The pole placement is such that the contour can be rotated to be along the imaginary

k0 axis, running from −i∞ to +i∞. This will later tie in with a useful way to treat QFT,

by going to Euclidean space via imaginary time. It is something of a technical trick,

but there is also something deep about it. Analyticity properties of amplitudes is deeply

connected with causality. More later.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator. Let e.g. φ(x) = φ+(x) + φ−(x), where φ+ is the term with

annihilation operators and φ− is the one with creation operators (using Heisenberg and

Pauli’s reversed-looking notation). Then for x0 > y0 the contraction is [A+, B−], and for

y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).
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