10/7 Lecture outline
* Reading for today’s lecture: Coleman to end of lecture 4 (p. 37).

e Last time: write
$(z) = ¢"(z) + ¢~ (2),
with (backwards looking Heisenberg / Pauli notation)

d3k ik N d3k ik
o= | om0 = | G

and [a(k), al (k)] = (27)32w;,63(k — k') where ¢F are positive / negative frequency. His-
torically, first attempt was to keep just ¢ and regard it as a quantum wavefunction, 1,
with probability ~ ||2. Doesn’t work.

Define normal ordering : AB : for operators A and B: the terms are arranged so that

the annihilation operators are on the right, so annihilates the vacuum, e.g. : ¢+ (z)¢~ (y) :=
¢~ (y)¢" (z). Take

H=H— / Pk Bl
2r)2(22) |
3
Pz P / 7(27:;2?%) Fat (R)a(R).
We're dropping the CC contributing term in H, as discussed last time. So P*|0) = 0 and
PHp1...pn) = phylpi-..pn), where |p1...pn) =[], a'(k,)|0) and ply, = > p~.
e Last time: two-point field correlation function:
O660)10) = D ~9) = [ oot e,
(2m)32w(k)
Note also that 2i0,0 D(x — y) is the integral that we saw in last lecture, for the probability
amplitude to find a particle having traveled with spacetime displacement (x — y)*. For
spacelike separation, (z—y)? = —r?, we here get D(z—y) = 525K (mr), with K a Bessel
function. Recall that the Bessel function has a simple pole when its argument vanishes, and
exponentially decays at infinity. So D(x — y) ~ exp(—m|Z — ¢]) is non-vanishing outside
the forward light cone. We will soon discuss how to construct physical observables, like
S-matrix elements, from squaring amplitudes, and how to construct amplitudes from field
correlation functions. For the moment, suffice it to say that the above above correlator is
not directly a physical observable, and having it not vanish outside the light cone does not

imply any a-causality.



e Causality? There could be observable effects, from interference, if a commutator
of fields is non-vanishing outside of the lightcone. Let’s show that this does not happen.
Note that

[6(2), o(y)] = [67 (), 6~ (Y] + [¢™ (1), 67 (2)] =

d3k; d3k/ / I
- / (27m)%2w(k) / (27)32w (k') [a(k), al(K)]e=*e Y — (¢ y)

Note that the commutator is a c-number, not an operator:

[9(z), p(y)] = D1(x —y) — Di(y — z),

where Dy (x —1) is as defined above. For spacelike separation, (x —)% = —r2, Dy (z—y) =

55— K1 (mr), with K; a Bessel function. For spacelike separation, we can map (z — y)¥
to —(x — y)* by a Lorentz transformation, so Di(z —y) — D1(y — ) = 0. Good. The
commutator is non-vanishing for timelike separation.

Note that [¢(x), #(y)] = 0 for (x — y)? < 0, wouldn’t have been true for just ¢™(z),
so there would be information propagating outside the light cone. Moreover, neither |¢|?
nor |¢T|? can be interpreted as a conserved probability — the relativistic expression F =
\/m necessarily leads to particle productions. So instead we interpret ¢ as similar
to & in QM, as a hermitian operator, not a wavefunction.

e Get more interesting theories by adding interactions, e.g. V(¢) = %m2¢2 + Ao?,
treat 2nd term as a perturbation. We can consider perturbative solutions in both classical
or quantum field theory. The starting point is the green’s function for the theory with a
forcing function source:

e Consider £ = %8gb2 — %ngbQ — p¢, where p is a classical source. Solve by ¢ =
do+i [ d*yD(xz —y)¢(y), where ¢y is a solution of the homogeneous KG equation and the

green’s function D(x — y) satisfies

(85 +m?)D(z —y) = —id*(x —y).

By a F.T., get
d*k i :
Dol — ) = —ik(z—y)
(@ =) ﬁ (2m)* k2 — m2°
Consider the kg integral in the complex plane. There are poles at ky = Fwg, where

wr = +V k2 + m2. There are choices about whether the contour goes above or below the
poles, and that’s what the 7 label indicates.



e Going above both poles gives the retarded green’s function, Dg(z—y) which vanishes

for x¢g < yo. Considering xq > yq, get that

3
Dr(z —y) = 0(xo — yo) / (27:1)73];%

=0(xo —yo)(Di(x —y) — D1(y — ) = 0(zo — yo){[¢(z), (y)]),

where Dy (x — y) is as defined above. This is reasonable: the p(y) source only affects ¢(z)

(e—ik(w—y) _ eik(w—y))

in the future.
Going below both poles gives the advanced propagator, which vanishes for yg < zg.
e Feynman propagator: go above the kg = Ej pole and below the ky = —F} pole.

—F; pole is heuristically the anti-matter, traveling backward in time. Show that this gives
Dp =0(zo — yo)D1(z — y) + 0(yo — z0) D1 (y — ).

Now show

Dl — ) = (Totyotu)) = { G000 o=

Here T' means to time order: order operators so that earliest is on the right, to latest on
left. Object like (T'¢p(x1)...¢(z,)) will play a central role in this class. Time ordering
convention can be understood by considering time evolution in (¢¢|t;). Evaluate Dp(x —v)
by going to momentum space:

d4k i —ik(x—
Dr(z —y) = / (2m)* k2 —m? + ie€ Y,

where ¢ — 07 enforces that we go below the —w;, pole and above the +wy pole, i.e. we

get D(z —y) if g > yo, and D(y — x) if xg < yo, as desired from the definition of time
ordering. We’ll see that this ensures causality.

e The pole placement is such that the contour can be rotated to be along the imaginary
ko axis, running from —i00 to +ioco. This will later tie in with a useful way to treat QFT,
by going to Euclidean space via imaginary time. It is something of a technical trick,
but there is also something deep about it. Analyticity properties of amplitudes is deeply
connected with causality. More later.

e Define contraction of two fields A(x) and B(y) by T(A(x)B(y))— : A(x)B(y) :. This
is a number, not an operator. Let e.g. ¢(z) = ¢ (z) + ¢~ (z), where ¢T is the term with
annihilation operators and ¢~ is the one with creation operators (using Heisenberg and
Pauli’s reversed-looking notation). Then for z° > ¢" the contraction is [AT, B~], and for
y° > 2% it is [BT, A7]. So can put between vacuum states to get that the contraction is
(T'A(x)B(y)). For example, in the KG theory the contraction of ¢(z) and ¢(y) is Dp(x—y).



