
10/19 Lecture outline

⋆ Reading for today’s lecture: Coleman lecture notes pages 70-80.

• Last time:

〈f |(S − 1)|i〉 = 〈f |Te−i
∫

d4x:HI :(x)|i〉 ≡ iAfi(2π)
4δ(4)(pf − pi).

The initial states have momenta p1 . . . pn and the final states have momenta q1 . . . qm.

Need to strip off the momentum conserving delta function to get the amplitude. Note

the normal ordering in : HI : (x): we want the full Hamiltonian to be normal ordered so

e.g. |0〉 has zero energy. If we don’t normal order here, we’ll have issues with some loops

for the interaction. Later (next quarter) we’ll discuss counter terms, and essentially here

the normal ordering is throwing away things that we’d anyway have to subtract off with

counterterms.

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the toy model for nucleons and mesons:

L = 1
2 (∂φ

2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ)− gφψψ†.

So HI = gφψ†ψ.

Note that there is a ψ → eiαψ global symmetry, so there is a corresponding conserved

current and charge, which we’ll call “nucleon number”. We choose to assign ψ nucleon

number charge −1 and ψ† nucleon number +1. (This is similar to the recent HW question.)

• Time out for a few comments. The scalar φ and coupling gφψψ̄ is also a good toy

model for the Higgs’ coupling to fermions. Here, and there, the scalar “Yukawa” coupling

mediates a force. The strong, weak, and electromagnetic forces are communicated by spin

1 gauge fields. Gravity is mediated by the spin 2 graviton (and the difference between spin

1 vs spin 2 is part of why quantum gravity is conceptually and technically challenging).

Spin 0 scalars can also mediate forces, as in this example. We’ll see that their force is

always attractive (even spins always lead to attractive forces). Fifth force experimental

bounds strongly constrain the existence, mass, and couplings of fundamental scalars.

In our toy model, where ψ and ψ̄ are scalars, the theory has a vacuum instability,

since a cubic potential isn’t bounded below. This shows up only indirectly in perturbation

theory, and is more of a non-perturbative issue.
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• Use φ ∼ a + a† for “mesons,” ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll say that b

annihilates a nucleon N and c† creates an anti-nucleon N̄ . Conservation law, conserved

charge Q = Nb −Nc.

Examples of states:

|φ(p)〉 = a†(p)|0〉, |N(p)〉 = b†(p)|0〉, |N̄(p)〉 = c†(p)|0〉.

Note then e.g.

〈0|φ(x)|φ(p)〉 = e−ip·x, 〈0|ψ(x)|N(p)〉 = e−ip·x, 〈0|ψ†(x)|N(p)〉 = 0.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−ig(2π)4δ4(p− q1 − q2) to O(g), i.e. A = −g. Probability ∼ g2.

Let’s also do some dimensional analysis. Recall that [φ] = 1 and [d3k/2ω] = 2, so

[a(k)] = [a†(k)] = −1. So [|i, f〉] = −ni,f and [A] = 4− ni − nf . In our example, [g] = 1,

so A(φ→ N + N̄) = −g is dimensionally consistent. Good.

Comment: draw pictures to illustrate a ∼ g3 correction, with 1 loop. In general,

amplitudes scale like (g2/16π2)L where L is the number of loops. But we’ll see that loops

lead to divergent momenta integrals, eg.
∫ Λ

d4k/k2 −m2 ∼ Λ2. How to handle this will

be deferred to next quarter...

• Now consider N +N → N +N , to O(g2). The initial and final states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p

′
2).

The term that contributes to scattering at O(g2) is (don’t forget the time ordering!)

T
(−ig)2

2!

∫
d4x1d

4x2φ(x1)ψ
†(x1)ψ(x1)φ(x2)ψ

†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p
′
2| : ψ

†(x1)ψ(x1)ψ
†(x2)ψ(x2) : |p1p2〉 = 〈p′1p

′
2| : ψ

†(x1)ψ
†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

Continue next time...
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