212 Homework 1, due 10/7/16

- 1. (Sakurai 1.9.) Construct $|+_{\hat{n}}\rangle \equiv |\vec{S}\cdot\hat{n};+\rangle$ by explicitly solving the eigenvalue equation, letting \hat{n} be a unit vector with the usual angles (θ, ϕ) of spherical coordinates.
- 2. Suppose a SG setup measures $\vec{S} \cdot \hat{n} = \hbar/2$. What is the probability that a subsequent SG setup will measure $\vec{S} \cdot \hat{n}' = -\hbar/2$? Take \hat{n} to have angles (θ, ϕ) and \hat{n}' to have angles (θ', ϕ') . Verify that you get reasonable answers if $\hat{n} = \hat{n}'$ and $\hat{n} = -\hat{n}'$.

3. Evaluate $\langle S_z \rangle$ and $\langle S_z^2 \rangle$ in the state $|+_{\widehat{n}} \rangle$.

4. A beam of spin 1/2 atoms go through a series of SG measurements as follows.

(a) The first measurement is along the \hat{z} axis and blocks out spin down (only spin up goes out).

(b) The second is along the \hat{n} axis and blocks spin down.

(c) The second is along the \hat{z} axis and blocks spin up.

Find the probability to make it through all three, in terms of the (θ, ϕ) of \hat{n} .

5. Let σ^i be the Pauli matrices.

(a) Verify that $\vec{a} \cdot \vec{\sigma} \vec{b} \cdot \vec{\sigma} = i(\vec{a} \times \vec{b}) \cdot \vec{\sigma} + \mathbf{1} \vec{a} \cdot \vec{b}$ for arbitrary vectors \vec{a} and \vec{b} . Equivalently you can show $\sigma^i \sigma^j = i \epsilon_{ijk} \sigma^k + \delta_{ij} \mathbf{1}$.

- (b) Show by series expansion that $e^{i\theta \hat{n}\cdot\vec{\sigma}} = \cos\theta \mathbf{1} + i\sin\theta \hat{n}\cdot\vec{\sigma}$.
- (c) Verify that $e^{i\theta \hat{n}\cdot\vec{\sigma}}$ is unitary, provided that θ is real.
- 6. Let $A = a_0 \mathbf{1} + \vec{a} \cdot \vec{\sigma}$ and $B = b_0 \mathbf{1} + \vec{b} \cdot \vec{\sigma}$.
 - (a) What is the condition on the a_0 , \vec{a} , b_0 , \vec{b} for A and B to be Hermitian?
 - (b) Compute [A, B]. What condition is needed for [A, B] = 0?
 - (c) Compute $\{A, B\}$.
- 7. Suppose that $A = a_0 \mathbf{1} + \vec{a} \cdot \vec{\sigma}$ corresponds to a physical observable.
 - (a) If the A observable is measured, what are the possible outcomes?

(b) Suppose that an electron goes through a SG setup that measures $S_z = \hbar/2$. A subsequent experiment measures the A observable. What is the probability for each outcome? What is $\langle A \rangle$?

(c) What condition is needed (for a_0 and a^i) such that A and S_z measurements don't interfere with each other?

8. Show that the projector onto $|+_{\widehat{n}}\rangle$ can be written in the usual $|\pm_{\widehat{z}}\rangle$ basis as $P = |+_{\widehat{n}}\rangle\langle+_{\widehat{n}}| \rightarrow \frac{1}{2}(1+\widehat{n}\cdot\vec{\sigma})$. Verify that $P^2 = P$, as required for a projection operator.

9. (a) Read or convince yourself that $\langle \psi | \psi \rangle \geq 0$ implies (as discussed in class) $\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \geq |\langle \alpha | \beta \rangle|^2$ which then implies (as started to discuss at the end of the last lecture) $\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} |\langle [A, B] \rangle|^2$. You don't need to write the arguments out - just convince yourself that you known them.

(b) Verify that $\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} |\langle [A, B] \rangle|^2$ is satisfied in the state $|+_z\rangle$ for $A = S_x$, $B = S_y$ and also for $A = S_x$, $B = S_z$.