
11/30/16 Lecture 19 outline

• Last time: spherical tensor operators: let T
(k)
q be an operator with ℓ = k and

m = q. For example, T
(2)
0 = U+V − +2U0V0 + U−U+ where ~U and ~V are two vectors

and U± = ∓(Ux ± iUy)/
√
2 and U0 = Uz. They have [Jz, T

(k)
q ] = h̄qT

(k)
q and [J±, T

(k)
q ] =

h̄
√

(k ∓ q)(k ± q + 1)T
(k)
q±1, i.e. T

(k)
q transform like |k, q〉.

• Wigner-Eckart theorem:

〈α′, j′m′|T (k)
q |α, jm〉 = (2j + 1)−1/2〈jk;mq|jk; j′m′〉〈α′j′||T (k)||αj〉.

The idea is that the product T
(k)
q |α, jm〉 is adding the angular momentum of T

(k)
q to that

of |α, jm〉 so the inner product with 〈α′, j′m′| is given by a Clebsch Gordon coefficient.

The first term on the RHS is a CG coefficient, which is zero unless m′ = q + m and

|j−k| ≤ j′ ≤ j+k. The last term is independent of m and m′; this is where the symmetry

gives some helpful mileage. Example: for a scalar operator S get

〈α′, j′m′|T (k)
q |α, jm〉 = (2j + 1)−1/2δj′jδm′m〈α′j′||T (k)||αj〉.

For a vector operator ~V get j′ − j = 0,±1 and m′ −m = ±1, 0. Useful in perturbation

theory for radiation (212b and 212c). Another immediate application: a state of spin j

cannot have a non-zero expectation value of an operator with angular momentum ℓ unless

ℓ ≤ 2j. Therefore, a particle of spin zero cannot have a non-zero magnetic dipole moment

and a particle with spin 1/2 cannot have an electric quadrupole moment.

• Density operators and pure versus mixed ensembles. Up to now, we have been

discussing pure quantum states. In such a state, the expectation value of any operator is

〈O〉 ≡ 〈ψ|O|ψ〉. Now consider a system with some additional uncertainty. For example, an

electron that is fresh out of the oven, which has not yet had its spin measured by a Stern-

Gerlach experiment. We say it is unpolarized, meaning that its polarization is random and

if one considers an ensemble then some will have one polarization some will have another.

This is a mixed state. For a mixed state, have 〈〈O〉〉 = trρO, where ρ =
∑

i pi|i〉〈i|, where
trρ = 1 is a normalization condition. For a pure state, pi = δi,i0 . Note trρ2 ≤ 1, where the

inequality is saturated iff it is a pure state.

In the Schrodinger picture, find ih̄ dρ
dt

= [H, ρ], like the Heisenberg equations of motion

but with opposite sign. Indeed, in classical mechanics + quantizing we have

dF

dt
=
∂F

∂t
+ {F,H}PB → dF

dt
=
∂F

∂t
+

1

ih̄
[F,H],

1



so the density operator has dρ
dt , which is the quantum version of Liouville’s theorem about

the phase space distribution behaving as an incompressible fluid.

Examples from spin 1/2 with pure states and mixed states: ρ→ 1
2
(1+ n̂ ·~σ) for a pure

state, where 1
2 h̄n̂ = 〈~S〉. For a mixed state, ρ→ 1

2 (1+(pa−pb)n̂·~σ) and 〈~S〉 = 1
2 h̄(pa−pb)n̂

and pa and pb are probabilities with pa + pb = 1.

Aside: von Neumann entropy is S = −kBtrρ ln ρ; it is zero for a pure state.

• Density matrices for subsystems if we cannot access the full system. See e.g. Mc-

Greevy’s lectures, p. 115: suppose that we have two spin 1
2
electrons in a state with

total spin 0: |Bohm〉 = (| + −〉 − | − +〉)/
√
2. We can get a density matrix from

ρA = trB |Bohm〉〈Bohm| = 1
2
1A, which is a maximally impure state.

• Spin correlation measurements and Bell’s inequality. EPR thought experiment. If

Alice measures ~S · â = ±h̄/2, then Bob will measure ~S · â = ∓h̄/2 with 100% probability,

whereas if Alice does not do the measurement then Bob would get either possibility half

the time. This rightly bothered Einstein, Podolsky, and Rosen because the experiments

could be spacelike separated. Now if Alice measures ~S · â = +h̄/2 and Bob measures ~S · b̂,
the result according to QM will be +h̄/2 with P (â+; b̂+) = 1

2 sin
2(θab/2) where 1

2 is the

probability of the initial experiment giving ~S1 · â being +.

If there were hidden variables and classical physics, then would find

P (â+; b̂+) ≤ P (â+; ĉ+) + P (ĉ+; b̂+).

This is Bell’s inequality, which is a simple statement about probabilities if three things are

measured, each of which has two options. Then e.g. P (1+, 2+) = (N3 + N4)/NT where

NT =
∑8

i=1Ni and P (1+, 3+) = (N2 +N4)/NT and P (2+, 3+) = (N3 +N7)/NT and the

above inequality is simply N3 +N4 ≤ (N2 +N4) + (N3 +N7).

In QM on the other hand, this inequality is generally violated:

sin2( 12θab) ≤ sin2( 12θac) + sin2( 12θcb)???.

Taking e.g. θac = θcb = θ and θab = 2θ, this inequality is violated for 0 < θ < π/2. QM

says that Bell’s inequality can be violated. Experiment agrees with QM (Aspect).
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