
9/28/16 Lecture 2 outline

• Quantum mechanics: quantization of various classically continuous things, e.g. an-

gular momentum, energy levels of atoms and other bounded systems (e.g. SHO). Recover

approximate classical answers when quantum n is huge, e.g. when S ≫ h̄. We will start

with a 2-state system because it is both mathematically simplest and physically as quantum

as you can get.

• Stern-Gerlach [1921-1922] effectively measured the spin of an electron along an axis

of choice. Send silver atoms through a gradient of ~B, so ~F = ∇(~µ · ~B), with ~µ = ge~S/2mc.

Instead of getting a continuous distribution, as expected classically, get two possibili-

ties. Effectively measuring Sz and showed that the only possible outcomes are Sz = ±1

2
h̄

(recall h̄c = 1973eV Å). For an initially unpolarized, random sample, find half are spin up

and half are spin down. The expected value 〈S〉 is thus zero, even though no experiment

measures zero. The expected value of 〈S2

z 〉 = (h̄/2)2. Also 〈(∆Sz)
2〉 = (h̄/2)2, where

∆A ≡ A− 〈A〉 is the deviation from average.

• Recall polarization sheets. Write ~E of an electromagnetic wave as ~E = Re~E0e
i~k·~x−ωt.

Here the i is just for convenience, of course ~E is real. Mentioning this because quantum

states are naturally complex. As mentioned last time: [x, p] = ih̄, emphasize the i. Take

~k = kẑ and discuss choices of ~E0. Actually, ~E is a coherent collections of photons, and

each has a spin variable – it is spin 1. The quantum description is similar to SG, but

with complications because photons are bosons and they are massless – it really requires

quantum field theory rather than non-relativistic QM. This class will only discuss non-

relativistic QM.

• So we consider successive SG measurements along various axes and the analogy

with light polarization. First consider blocking the Sz = −1

2
h̄ channel and then doing the

experiment again, measuring along the z axis. As long as ~B is negligible in between (to

avoid spin precession), find now that all the electrons are still spin up. If the first SG setup

measures Sz and blocks down spins from passing, and the second measures Sz and blocks

up spins from passing, nothing will pass through.

Now the fun: suppose that we put another SG setup in between. If that measures

Sz, the results are unchanged. But if it measures instead ~S along another axis, now some

do pass through all three. (It doesn’t matter whether or not the middle one has one

side blocked.) This shows that the middle measurement is not innocuous, but rather has

changed the state of the system.
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• Kets, operators, bras, basis kets, orthogonality and completeness relations.

• Physical observables correspond to Hermitian operators. Show that their eigenvalues

are real and that bras and kets corresponding to different eigenvalues are orthogonal.

• ~S = 1

2
h̄~σ in the |±

ẑ
〉 basis. Note that ~S2 = (3/4)h̄21.

• Write |±
x̂
〉 and |±

ŷ
〉 in the |±

ẑ
〉 basis.

Ended here

• Stern Gerlach again, in this notation. Compute dispersion of Sx,y,z in |+
ẑ
〉.

• Use the Schwarz inequality 〈α|α〉〈β|β〉 ≥ |〈α|β〉|2 to prove 〈(∆A)2〉〈(∆B)2〉 ≥
1

4
〈[A,B〉|2 for Hermitian A and B. Use ∆A∆B = 1

2
[∆A,∆B] + 1

2
{∆A,∆B} and note

that the first term is anti-Hermitian and the second is Hermitian, so their expectation

values are pure imaginary and real, respectively.

• Position eigenstates. Momentum as generator of translations. Converting between

position and momentum eigenstate bases. Translation generator U(~a) = e−i~p·~a/h̄, satisfies

U(~a)|~x〉 = |~x+ ~a〉, so 〈~x|ψ〉 = ψ(~x) and 〈~x|U |ψ〉 = ψ(~x− ~a).
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