10/3/16 Lecture 3 outline

e N state Hilbert space. Basis vectors. Operators A and B and their eigenbases.
Consider [A,B] = 0 and [A,B] # 0. Unitary transformation between bases. Recall
rotation between bases for vectors and compare with bra ket inner product and unitary
transformations.

e Last time: two state system, e.g. happy cat or sad cat. Can only measure one or
the other, mutually exclusive, and a general state is a linear superposition with complex
coefficients. Physical observables are Hermitian operators. Can work in basis of their
cigenstates. We started to discuss S = $hé in the |£-) basis. Note that 52 = (3/4)h%1,
and [S, S°] = ihe®®S¢, which are basis independent. We wrote |+~) and |j:§> in the |+)
basis.

e Note that |£~) and |:t§) are related to |£,) by unitarity transformations. Aspects of
unitary transformations and change of bases. Indeed, these transformations are examples
of rotations. U(f) = e=i0-5/n, e.g. U(2m) = —1. Rotate 7/2 around y axis to rotate z into
x eigenstates. More generally, observables A and UAU ! are unitary equivalent.

ended here

e It follows from [S,,Sp] # 0 for a # b that spin along different axes cannot be

simultaneously diagnonalized, and hence they cannot be simultaneously measured.
e Schwarz inequality: |||x)]|> = (x|x) > 0. Apply to |x) = |a) + x|8) and mini-
mize in z, taking it to be —(B|a)/{B|3), find (a|a)(B|3) > |[{a|B)|*. Use this to prove
((A4)%)((AB)?) > 1([A,B)|* for Hermitian A and B. Use AAAB = [AA,AB]+
+{AA,AB} and note that the first term is anti-Hermitian and the second is Hermitian,
so their expectation values are pure imaginary and real, respectively.

e Compute dispersion of S, , . in |+;) state. Check above inequality for A = S, and
B = Sy, s0 [A, B] =ihC, with C' = S, and €gp. = 1.

e Stern Gerlach again, using bras and kets.

e Position and momentum, and [z,p] = th. So AxAp > h/2, uncertainty principle.
Can use to estimate ground state energy, e.g. particle in a box of size L has Az ~ L and
E ~ p?/2m ~ (Ap)?/2m ~ h? /mL?. Actual ground state energy is w2h%/2mL2.

e Position and momentum eigenstates. Momentum as generator of translations.
Converting between position and momentum eigenstate bases. Translation generator
U(d) = e /" gsatisfies U(a)|Z) = |& + @), so (Z|Y) = (&) and (F|U|Y) = (& — @).
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Checks: U(a@)~! = U(~a). Such exponentials frequently appear because tiny transforma-
tions are combined by exponentiation, since imy oo (1 + 2/N)V = €®.

e Consider first 1d case. <x|e_i;”/h|¢> = ¢(z — a) = e %dz1)(x), where the last
one is Taylor’s series. So we can write p = —ih-L in the (x| basis. Then (z|p)p gives
—ih-Lep,(z) = pYp(z), where 1, (z) = (z|p) = Ne®P®/" /\/2rh, where it is common to take
N =1/v2rh or N = 1, but that is just a convention.

e The position and momentum eigenstates are delta-function normalized: (z'|z) =
d(x — ') and (p'|p) = N'd(p — p’), where it is common to take N’ =1 or N’ = 27h.

e Generalization to 2d or 3d.

e Momentum generates spatial translations, and the Hamiltonian (energy) generates
time translations. Schrodinger equation: ihd,U (t,tg) = HU(t,tg). For time independent

—iH(t=to)/h  For ¢t dependent H, one gets instead

H, this is simple to integrate: U = e
(Dyson) U(t,tg) = T exp(—(i/h) fti) dt'H(t')), where T denotes time ordering. We won’t

need that here.



