
10/3/16 Lecture 3 outline

• N state Hilbert space. Basis vectors. Operators A and B and their eigenbases.

Consider [A,B] = 0 and [A,B] 6= 0. Unitary transformation between bases. Recall

rotation between bases for vectors and compare with bra ket inner product and unitary

transformations.

• Last time: two state system, e.g. happy cat or sad cat. Can only measure one or

the other, mutually exclusive, and a general state is a linear superposition with complex

coefficients. Physical observables are Hermitian operators. Can work in basis of their

eigenstates. We started to discuss ~S = 1
2
h̄~σ in the |±

ẑ
〉 basis. Note that ~S2 = (3/4)h̄21,

and [Sa, Sb] = ih̄ǫabcSc, which are basis independent. We wrote |±
x̂
〉 and |±

ŷ
〉 in the |±

ẑ
〉

basis.

• Note that |±
x̂
〉 and |±

ŷ
〉 are related to |±z〉 by unitarity transformations. Aspects of

unitary transformations and change of bases. Indeed, these transformations are examples

of rotations. U(~θ) = e−i~θ·~S/h̄, e.g. U(2π) = −1. Rotate π/2 around y axis to rotate z into

x eigenstates. More generally, observables A and UAU−1 are unitary equivalent.

ended here

• It follows from [Sa, Sb] 6= 0 for a 6= b that spin along different axes cannot be

simultaneously diagnonalized, and hence they cannot be simultaneously measured.

• Schwarz inequality: |||χ〉||2 = 〈χ|χ〉 ≥ 0. Apply to |χ〉 = |α〉 + x|β〉 and mini-

mize in x, taking it to be −〈β|α〉/〈β|β〉, find 〈α|α〉〈β|β〉 ≥ |〈α|β〉|2. Use this to prove

〈(∆A)2〉〈(∆B)2〉 ≥ 1
4
〈[A,B〉|2 for Hermitian A and B. Use ∆A∆B = 1

2
[∆A,∆B] +

1
2
{∆A,∆B} and note that the first term is anti-Hermitian and the second is Hermitian,

so their expectation values are pure imaginary and real, respectively.

• Compute dispersion of Sx,y,z in |+
ẑ
〉 state. Check above inequality for A = Sa and

B = Sb, so [A,B] = ih̄C, with C = Sc and ǫabc = 1.

• Stern Gerlach again, using bras and kets.

• Position and momentum, and [x, p] = ih̄. So ∆x∆p ≥ h̄/2, uncertainty principle.

Can use to estimate ground state energy, e.g. particle in a box of size L has ∆x ∼ L and

E ∼ p2/2m ∼ (∆p)2/2m ∼ h̄2/mL2. Actual ground state energy is π2h̄2/2mL2.

• Position and momentum eigenstates. Momentum as generator of translations.

Converting between position and momentum eigenstate bases. Translation generator

U(~a) = e−i~p·~a/h̄, satisfies U(~a)|~x〉 = |~x + ~a〉, so 〈~x|ψ〉 = ψ(~x) and 〈~x|U |ψ〉 = ψ(~x − ~a).
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Checks: U(~a)−1 = U(−~a). Such exponentials frequently appear because tiny transforma-

tions are combined by exponentiation, since limN→∞(1 + x/N)N = ex.

• Consider first 1d case. 〈x|e−ip̂a/h̄|ψ〉 = ψ(x − a) = e−a d

dxψ(x), where the last

one is Taylor’s series. So we can write p̂ = −ih̄ d
dx in the 〈x| basis. Then 〈x|p̂〉p gives

−ih̄ d
dx
ψp(x) = pψp(x), where ψp(x) ≡ 〈x|p〉 = Neipx/h̄/

√
2πh̄, where it is common to take

N = 1/
√
2πh̄ or N = 1, but that is just a convention.

• The position and momentum eigenstates are delta-function normalized: 〈x′|x〉 =

δ(x− x′) and 〈p′|p〉 = N ′δ(p− p′), where it is common to take N ′ = 1 or N ′ = 2πh̄.

• Generalization to 2d or 3d.

• Momentum generates spatial translations, and the Hamiltonian (energy) generates

time translations. Schrodinger equation: ih̄∂tU(t, t0) = HU(t, t0). For time independent

H, this is simple to integrate: U = e−iH(t−t0)/h̄. For t dependent H, one gets instead

(Dyson) U(t, t0) = T exp(−(i/h̄)
∫ t

t0
dt′H(t′)), where T denotes time ordering. We won’t

need that here.
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