
10/17/16 Lecture 7 outline

• Last time: ih̄∂tU(t, t0) = HU(t, t0), ih̄|ψ(t)〉S = H|ψ(t)〉S, and OH = U †OU has

d

dt
OH =

1

ih̄
[OH , H] +

∂

∂t
OH .

• Emphasize that it is first order in t, like Hamilton’s equations in phase space.

Knowing initial state at t = 0 fully determines the state (or operators) at later t. No

uncertainty or probability here. The uncertainty / probability comes when one measures

(in a state that isn’t en eigenstate).

• SG examples, now with spin precessing in between the measurements. E.g. if there

is an external magnetic field in between the SG experiments, it’ll make the spin of the state

precess viaH = −~µ· ~B with ~µ = ge~S/2mc. Take e.g. ~B = B0ẑ soH = g|e|SzB/2mc ≡ ωSz

Then U = e−iHt/h̄ is diagonal in the |±z〉 basis. Show e.g. that if in the |+x〉 state at

t0 = 0, the probability of finding it later in the |±x〉 state is cos2(ωt/2) and sin2(ωt/2),

respectively, and 〈Sx〉 = 1

2
h̄ cosωt and 〈Sy〉 = 1

2
h̄ sinωt and 〈Sz〉 = 0, fitting with the

classical picture of precessing in the xy plane with frequency ω. Recall from HW that

eiθn̂·~σ = cos θ1+ i sin θn̂ · ~σ. Work out Sx(t) in that basis.

• For a massive particle in a bounding potential, the energy levels are discrete, En,

with n = 0, 1 . . .. Sometimes there are discrete levels and then a continuum, e.g. for atoms,

there are the bound energy levels En < 0, and then a continuum of E > 0 where the atom

is ionized. Consider for the moment the case where there are discrete energy levels En,

which are the eigenvalues of H, H|En〉 = En|En〉. Often just write |n〉 instead of En.

The |En〉 form a complete orthonormal basis, so 〈En|Em〉 = δn,m and 1 =
∑

n |En〉〈En|,
and any |ψ〉 can be thus expanded. The |En〉 in the S-picture time evolve with a simple

phase |En(t)〉S = e−iEnt/h̄|En(t = 0)〉, which is physically the same state (quantum states

don’t depend on the overall normalization), so they are referred to as stationary states.

Expanding |ψ(t)〉S in terms of these energy eigenstates reveals how the general state time

evolves. E.g. 1d particle in a box.

• Now consider the SHO, H = p2/2m + 1

2
m2ω2x2. The equation H|n〉 = En|n〉 in

position space becomes a 2nd-order differential equation which has solution given by some

special functions. That is a fine way to solve for the En and 〈x|n〉, especially if we like

solving differential equations. Happily, there is a much better way to solve this problem,
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which is simpler, more interesting, and more important than solving a differential equation.

It uses creation and annihilation operators

a ≡
√
mω

2h̄
(x+ ip/mω), so a† ≡

√
mω

2h̄
(x− ip/mω).

These satisfy the fundamental property [a, a†] = 1. We can then immediately show that

the Hermitian operator N = a†a has eigenvalues n = 0, 1, 2 . . ., and the eigenvectors |n〉
satisfy a|n〉 = √

n|n − 1〉 and a†|n〉 =
√
n+ 1|n〉. Since HSHO = h̄(ωN + 1

2
), we’re done.

If we really want 〈x|n〉, we can get it from |n〉 = (n!)−1/2(a†)n|0〉 by replacing p→ −ih̄ d
dx

and we can solve for ψ0(x) = 〈x|0〉 by using a|0〉 = 0, which in position space becomes a

simple first-order differential equation for ψ0(x):

ψn(x) =
(mω/2h̄)n/2√

n!
(x− h̄

mω

d

dx
)nψ0(x), (x+

h̄

mω

d

dx
)ψ0(x) = 0.

The solution is a Gaussian centered at x = 0: ψ0(x) = c0e
−mωx2/2h̄, where c0 is de-

termined from
∫
dx|ψ0(x)|2 = 1 = |c0|2

√
πh̄/mω. Let’s find the width of the ground-

state Gaussian another way: use creation and annihilation operators to show that, in the

groundstate 〈x2〉 = h̄/2mω and 〈p2〉 = h̄mω/2, so the uncertainty principle is saturated.

Rather than giving the detailed form of ψn(x) = 〈x|n〉, just comment that it has the form

cnHn(x
√
mω/h̄)e−mωx2/2h̄, where Hn is a polynomial in x of degree n, called a Hermite

polynomial (e−t2+2tx ≡ ∑∞
n=0

Hn(x)t
n/n!). Notice the qualitative similarity to the parti-

cle in the box: bigger n means smaller wavelength, so more nodes of ψn(x): the En state

has n nodes. There are theorems about this in 1d for particles in bounded potentials:

the groundstate always has no nodes, and the energy increases with the number of nodes.

Note also that we can take x→ −x and p→ −p which takes a→ −a and H → H. It is a

symmetry. We see that the state |n〉 → (−1)n|n〉 under this symmetry. So Pn(x = 0) = 0

for odd n.

Note also that ψn(x) extends past the classically allowed region, with exponential

decay.
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