
10/19/16 Lecture 7 outline

• Last time: SHO, H = p2/2m+ 1

2
m2ω2x2. The equation H|n〉 = En|n〉 in position

space becomes a 2nd-order differential equation which has solution given by some special

functions. That is a fine way to solve for the En and 〈x|n〉, especially if we like solving

differential equations. Happily, there is a much better way to solve this problem, which is

simpler, more interesting, and more important than solving a differential equation. It uses

creation and annihilation operators

a ≡
√
mω

2h̄
(x+ ip/mω), so a† ≡

√
mω

2h̄
(x− ip/mω).

These satisfy the fundamental property [a, a†] = 1. We can then immediately show that

the Hermitian operator N = a†a has eigenvalues n = 0, 1, 2 . . ., and the eigenvectors |n〉
satisfy a|n〉 = √

n|n − 1〉 and a†|n〉 =
√
n+ 1|n〉. Since HSHO = h̄(ωN + 1

2
), we’re done.

If we really want 〈x|n〉, we can get it from |n〉 = (n!)−1/2(a†)n|0〉 by replacing p→ −ih̄ d
dx

and we can solve for ψ0(x) = 〈x|0〉 by using a|0〉 = 0, which in position space becomes a

simple first-order differential equation for ψ0(x):

ψn(x) =
(mω/2h̄)n/2√

n!
(x− h̄

mω

d

dx
)nψ0(x), (x+

h̄

mω

d

dx
)ψ0(x) = 0.

We can likewise get 〈p|n〉 ≡ ψ̃n(p), either from inserting 1 =
∫
dx|x〈〉x|, which relates it to

ψn(x) via Fourier transform, or we can directly go to p basis via p̂→ p and x̂→ ih̄ d
dp . In

x space, the groundstate is seen to be a Gaussian centered at x = 0: ψ0(x) = c0e
−mωx2/2h̄,

where c0 is determined from
∫
dx|ψ0(x)|2 = 1 = |c0|2

√
πh̄/mω. Let’s find the width of

the groundstate Gaussian another way: use creation and annihilation operators to show

that, in the groundstate 〈x2〉 = h̄/2mω and 〈p2〉 = h̄mω/2, so the uncertainty principle is

saturated. Rather than giving the detailed form of ψn(x) = 〈x|n〉, just comment that it

has the form cnHn(x
√
mω/h̄)e−mωx2/2h̄, where Hn is a polynomial in x of degree n, called

a Hermite polynomial (e−t2+2tx ≡ ∑∞
n=0

Hn(x)t
n/n!). Notice the qualitative similarity

to the particle in the box: bigger n means smaller wavelength, so more nodes of ψn(x):

the En state has n nodes. There are theorems about this in 1d for particles in bounded

potentials: the groundstate always has no nodes, and the energy increases with the number

of nodes. In this case, ψn(x) extends past the classically allowed region, with exponential

decay. (For the particle in an infinite box, ψ vanished outside the box only because of

V = ∞ there, and indeed the solution has an associated discontinuity in ψ′ at the ends.)
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Note that P : x → −x and p → −p which takes a → −a and H → H is a symmetry.

We see that the state |n〉 → (−1)n|n〉 under this symmetry. So ψn(x = 0) = 0 for odd n.

Also, see that 〈n|xrps|m〉 is only non-zero if n+ r + s+m is even. Actually, using x and

p in terms of a and a†, see that this matrix element must have |n−m| ≤ r + s.

• In the Heisenberg picture we have ȧ = −iωa, hence a(t) = e−iωta, where a = a(0).

Show that this gives x(t) = x(0) cosωt + (p(0)/m) sinωt and p(t) is then obtained from

p = mẋ(t). BCH formula eiBλAe−iBλ =
∑∞

n=0
((iλ)n/n!)[B, [B, . . .A]]]]]].

• 2d and 3d particle in a box and SHOs. First discuss general case of H = H1 +H2

subsystems, where all variables in H1 commute with those in H2. Then the Hilbert space

is spanned by a tensor product of states from the two subsystems |ψ12〉 = |ψ1〉⊗ |ψ2〉, and
observables such as E are the sum of those in the two subsystems. In terms of solving the

S.E. this is the statement of separation of variables.

• Position space probability density ρ(~x, t) = |ψ(~x, t)|2 and current ~j(~x, t) =

(h̄/m)Im(ψ∗ ∇ψ). Note
∫
d3~x~j = 〈~p〉/m. Can also write ~j = ρ∇S/m, where ψ ≡ √

ρeiS/h̄.

E.g. for a plane wave ∇S = ~p. Substituting ψ ≡ √
ρeiS/h̄ into the time dependent SE

gives an equation where each S derivative has a 1/h̄. In the classical limit we have e.g.

| ∇S|2 ≫ h̄| ∇2S| and the SE reduces to

1

2m
| ∇S|2 + V (x) +

∂S(~x, t)

∂t
= 0

which is the Hamilton-Jacobi equation of classical mechanics with S Hamilton’s function.

This shows how the SE reduces to classical mechanics in the S/h̄≪ 1 limit. We will soon

briefly discuss the path integral description of QM, where S is replaced with the action

functional.
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