University of California at San Diego – Department of Physics – TA: Shauna Kravec

Quantum Mechanics A (Physics 212A) Fall 2016 Worksheet 4

Announcements

• The 212A web site is:

http://keni.ucsd.edu/f16/ .

Please check it regularly! It contains relevant course information!

Problems

1. Give it a Kick

Consider the D = 1 simple harmonic oscillator in its groundstate. Suppose something kicks the system imparting an additional momentum p_0 . What's the probability the system remains in the ground state?

- (a) What's the new Hamiltonian for the system? Express this in terms of the usual ladder operators \hat{a} and \hat{a}^{\dagger}
- (b) Define a new operator $\hat{A} \equiv \hat{a} \beta$ where $\beta \equiv \frac{1}{i\omega} \frac{p_0}{m} \sqrt{\frac{m\omega}{2}}$. Show that the \hat{A} are ladder operators: $[\hat{A}, \hat{A}^{\dagger}] = 1$
- (c) Rewrite the new Hamiltonian in terms of these operators, what do you find?
- (d) Relate the original groundstate $|0\rangle$ to the new groundstate $|\beta\rangle$
- (e) Using $|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}}|0\rangle$ compute $P = |\langle 0|\beta\rangle|^2$ Hint: Insert identity and use the relation above.

2. Bogliubov Transformation

We solved a new Hamiltonian by defining a set of transformed creation/annihilation operators which satisfy the same algebra $[A, A^{\dagger}] = \mathbb{1}$

More generally consider $\hat{b} = \hat{a} \cosh \eta + \hat{a}^{\dagger} \sinh \eta$

- (a) Show that $[\hat{b}, \hat{b}^{\dagger}] = 1$
- (b) Show that $\hat{b} = U\hat{a}U^{\dagger}$ for $U = e^{\frac{\eta}{2}(\hat{a}\hat{a} \hat{a}^{\dagger}\hat{a}^{\dagger})}$
- (c) Show for fermionic operators $\hat{c}^2 = 0 = (\hat{c}^{\dagger})^2$ and $\{\hat{c}, \hat{c}^{\dagger}\} = 1$ that $\hat{d} = \hat{c} \cos \theta + \hat{c}^{\dagger} \sin \theta$ is the analogous operator

Now consider the Hamiltonian

$$\hat{H} = \omega \hat{a}^{\dagger} \hat{a} + \frac{V}{2} (\hat{a} \hat{a} + \hat{a}^{\dagger} \hat{a}^{\dagger}) \tag{1}$$

- (c) Diagonalize the Hamiltonian (1) using the \hat{b} operators for suitably chosen η
- (d) Show there is a limit on V for which this Hamiltonian makes physical sense