Physics 105a, Ken Intriligator lecture 12, Nov 9, 2017

e Recall from last time: Fourier transforms:
* —iwt dw r > wt
f(t) = flw)e o < flw) = f(t)e dt.

Also, there are similar formulae for Fourier transforms in space, with a conventional minus

sign difference (so combining gives traveling waves moving to the right):
* z ikx dk r > —ikx
fla) = fR)e™o— o flh)= flz)e™ ™ dx.
We discussed f(t) « f(w) examples
i(t) <> 1

1+ 27w (w)
even < even

odd < odd
i > _1
7 w

t/|t| < 2i/w
O(t) = (1 +t/|t]) > md(w) + (i/w)

Today we will also discuss

t<—>z’i
dw

convolution <> multiplication
thin < fat

Fourier transforms convert % — —iw and [ dt — 1/(—iw) up to constants. Also, they
convert convolutions to multiplication: if h(t) = [ dt, f(t1)g(t—t1), then h(w) = f(w)d(w).

Recall f(t) = d(t) < f(w) =1 and f(t) = 1 < f(w) = 270(w). Now consider the
FT of H(t) = ©(t). Since the FT converts 4 — —iw, and 4£0O(t) = §(t), we might
guess that the FT of H(t) is i/w. As we discussed last time, and we can also see from
H(w) = Jo~© dt(coswt + isinwt) = T6(w) + iw™'. Again, 4 5 —jw acts on this to give
1, as expected, since wd(w) = 0. We discuss this last time in terms of the FT of an even
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or odd function being also even or odd: if f(—t) = £f(¢) then f(—w) = £f(w). Then
H(t) = 1(1 +sign(t)), and the FTs are 51 — m6(w) and
e Units of f(t) vs f(w).

e Parseval’s result, and interpretation as inner product of function with itself in either

)
Ssign(t) — i/w.

basis. Another way to say it is that the Fourier transform is unitary (recall a matrix or
operator U is unitary if UUT = 1; the eigenvalues of such an operator are e!® with ¢ real).
In QM this implies that if the wave function is properly normalized in position space, it’ll
automatically be properly normalized in momentum i.e. wavenumber space. Comment
about this in the various examples.

e Recall that f(t) = d(t) « f(w) = 1, and thus §(t) = [Z5 deemiwt Taking the
integral instead from —a to a, where a is real and positive, gives §(t) = lim,_, o, sin(at)/xt.
Verify for all a that the area under this curve is 1, and that its shape verifies §(t) =

foo d_we—iwt

o 5 . Now, as a next example, let’s consider the FT of f(¢) = sin(at)/nt, with a

real and positive. The FT gives f(t) — f(w) = O(a — |w|); show how to do the integral by
using Cauchy’s theorem (similar to a midterm question), deforming the pole to be above
the contour. For a — oo this indeed becomes FT'(d(t)) — 1. Note that, varying a this is
an example of thin<«> fat.

e (Show Mathematica file and see comments there about units, the derivative of the
delta function, etc. )

e Next example: f(t) = 1/(1 + s%t?) gives (either via Mathematica or Cauchy’s)

flw) = /Oo (14 5°%) " te™'dt = me1##1/|s].
Recall how to do it via Cauchy’s theorem: we can think if the integral as in the complex
t plane, and can close the contour for t — +oo if w > 0, or ¢t = —ioco if w < 0. The poles
of the integrand are at t = =+i/|s|, and we can write f(t) = 1/s%(t —ty)(t —t_), so the
residue at t4 is +1/s%(ty —t_) = 1/2|s|i. For w > 0 we get the pole at ¢, and for w < 0
we get the pole at t_, so f(w) = 2mi(1/2|s]i)e~1<sl.

e Example: f(t) = e 'O(t) + f(w) = (1 —iw)~ L.

e Example: f(z) = e**G(z — &,0), where G(z — Z,0) = (2r02)" Y2 exp(—(z —
7)?/20?) is the Gaussian normal distribution with mean Z and standard deviation o has
Fourier transform given by another Gaussian: f(k) = e **G(k — k,5) with 6o = 1.
Narrow in position space means broad in wavenumber space, and vice-versa. This fits with

what we saw in Fourier series: the more edges or sharp functions require larger coefficients
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for the higher frequency modes. In QM, where p = hk, this becomes the uncertainty
principle: ApAz > h/2, where the inequality is saturated for Gaussians. The factor of
two arises from how we calculate Az = /((x — (z))?), and likewise for Ap.

Moral of the story: more localized in space means broader in Fourier coefficient space,

and visa-versa.



