
Physics 105a, Ken Intriligator lecture 12, Nov 9, 2017

• Recall from last time: Fourier transforms:

f(t) =

∫ ∞

−∞

f̃(ω)e−iωt dω

2π
↔ f̃(ω) =

∫ ∞

−∞

f(t)eiωtdt.

Also, there are similar formulae for Fourier transforms in space, with a conventional minus

sign difference (so combining gives traveling waves moving to the right):

f(x) =

∫ ∞

−∞

f̃(k)eikx
dk

2π
↔ f̃(k) =

∫ ∞

−∞

f(x)e−ikxdx.

We discussed f(t) ↔ f̃(ω) examples

δ(t) ↔ 1

1 ↔ 2πδ(ω)

even ↔ even

odd ↔ odd

d

dt
↔ −iω

t/|t| ↔ 2i/ω

Θ(t) = 1

2
(1 + t/|t|) ↔ πδ(ω) + (i/ω)

Today we will also discuss

t ↔ i
d

dω

convolution ↔ multiplication

thin ↔ fat

Fourier transforms convert d
dt → −iω and

∫

dt → 1/(−iω) up to constants. Also, they

convert convolutions to multiplication: if h(t) =
∫

dt1f(t1)g(t−t1), then h̃(ω) = f̃(ω)g̃(ω).

Recall f(t) = δ(t) ↔ f̃(ω) = 1 and f(t) = 1 ↔ f̃(ω) = 2πδ(ω). Now consider the

FT of H(t) = Θ(t). Since the FT converts d
dt → −iω, and d

dtΘ(t) = δ(t), we might

guess that the FT of H(t) is i/ω. As we discussed last time, and we can also see from

H̃(ω) =
∫∞

0
dt(cosωt + i sinωt) = πδ(ω) + iω−1. Again, d

dt → −iω acts on this to give

1, as expected, since ωδ(ω) = 0. We discuss this last time in terms of the FT of an even
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or odd function being also even or odd: if f(−t) = ±f(t) then f(−ω) = ±f(ω). Then

H(t) = 1

2
(1 + sign(t)), and the FTs are 1

2
1 → πδ(ω) and 1

2
sign(t) → i/ω.

• Units of f(t) vs f̃(ω).

• Parseval’s result, and interpretation as inner product of function with itself in either

basis. Another way to say it is that the Fourier transform is unitary (recall a matrix or

operator U is unitary if UU † = 1; the eigenvalues of such an operator are eiφ with φ real).

In QM this implies that if the wave function is properly normalized in position space, it’ll

automatically be properly normalized in momentum i.e. wavenumber space. Comment

about this in the various examples.

• Recall that f(t) = δ(t) ↔ f̃(ω) = 1, and thus δ(t) =
∫∞

−∞
dω
2π

e−iωt. Taking the

integral instead from −a to a, where a is real and positive, gives δ(t) = lima→∞ sin(at)/πt.

Verify for all a that the area under this curve is 1, and that its shape verifies δ(t) =
∫∞

−∞
dω
2π e

−iωt. Now, as a next example, let’s consider the FT of f(t) = sin(at)/πt, with a

real and positive. The FT gives f(t) → f̃(ω) = Θ(a− |ω|); show how to do the integral by

using Cauchy’s theorem (similar to a midterm question), deforming the pole to be above

the contour. For a → ∞ this indeed becomes FT (δ(t)) → 1. Note that, varying a this is

an example of thin↔ fat.

• (Show Mathematica file and see comments there about units, the derivative of the

delta function, etc. )

• Next example: f(t) = 1/(1 + s2t2) gives (either via Mathematica or Cauchy’s)

f̃(ω) =

∫ ∞

−∞

(1 + s2t2)−1eiωtdt = πe−|ωs|/|s|.

Recall how to do it via Cauchy’s theorem: we can think if the integral as in the complex

t plane, and can close the contour for t → +∞ if ω > 0, or t → −i∞ if ω < 0. The poles

of the integrand are at t± = ±i/|s|, and we can write f(t) = 1/s2(t− t+)(t− t−), so the

residue at t± is ±1/s2(t+ − t−) = 1/2|s|i. For ω > 0 we get the pole at t+ and for ω < 0

we get the pole at t−, so f̃(ω) = 2πi(1/2|s|i)e−|ωs|.

• Example: f(t) = e−tΘ(t) ↔ f̃(ω) = (1− iω)−1.

• Example: f(x) = eik̄xG(x − x̄, σ), where G(x − x̄, σ) = (2πσ2)−1/2 exp(−(x −

x̄)2/2σ2) is the Gaussian normal distribution with mean x̄ and standard deviation σ has

Fourier transform given by another Gaussian: f̃(k) = e−ikx̄G(k − k̄, σ̃) with σ̃σ = 1.

Narrow in position space means broad in wavenumber space, and vice-versa. This fits with

what we saw in Fourier series: the more edges or sharp functions require larger coefficients
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for the higher frequency modes. In QM, where p = h̄k, this becomes the uncertainty

principle: ∆p∆x ≥ h̄/2, where the inequality is saturated for Gaussians. The factor of

two arises from how we calculate ∆x =
√

〈(x− 〈x〉)2〉, and likewise for ∆p.

Moral of the story: more localized in space means broader in Fourier coefficient space,

and visa-versa.
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