
Physics 105a, Ken Intriligator lecture 19, Dec 7, 2017

• Several physical situations that involve essentially the same mathematics: (i) Laplace

equation, (ii) heat equation, (iii) wave equation, (iv) Schrodinger equation (for a free

particle in a confining potential box). In all of them we solve the following boundary value

problem in space: find the eigenstates and eigenvalues of the Laplacian in the appropriate

geometry, and write the solution as a superposition of them, with coefficients determined

by the boundary conditions on the geometry’s boundary.

For the wave equation (∂2t − c2 ∇2)ψ = 0. For the heat equation (∂t − χ∇2)T̃ = 0.

For the Schrodinger equation (ih̄∂t +
h̄2

2m ∇2 − V )ψ = 0. For all of them the first step is to

solve for the eigenfunctions and eigenvalues of the Laplacian:

∇2ψ~n(~x) = −λ~nψ~n(~x).

We can regard the Laplace equation as a special case, with λ = 0, of this more general

equation. The minus sign is because the physical boundary conditions and behavior favor

such solutions, with λ > 0, which are oscillating, compared with the exponential solutions.

In 1d, we could either solve ψ′′ = +κ2ψ or ψ′′ = −k2ψ, and the former has exponential

solutions whereas the latter has oscillating, and we’re aiming for oscillating.

The ~n labels the solutions. E.g. for ψ′′
n = −k2nψn with D boundary conditions on

the two ends we get ψn = sin(nπx/L) and kn = −n2π2/L2. In d dimensions the similar

equation has d labels, so ~n denotes 3 labels in 3d. For example, in a 3d cube, with sides

of length a, b, and c, and D boundary conditions on each edge, we have

ψn1,n2,n3
(~x) = sin(n1πx/a) sin(n2πy/b) sin(n3πz/c), λ~n = −π2((n1/a)

2+(n2/b)
2+(n3/c)

2).

The ψ~n(x) form a complete basis for functions, so now one considers e.g.

ψ(~x) =
∑

~n

A~nψ~n(~x),

where the A~n are determined by the initial conditions and/or the boundary conditions on

the boundary of the region. For the wave equation and heat equation one obtains

ψ(t, ~x) =
∑

~n

(A~n cosω~nt+B~n sin(ω~nt))ψ~n(~x), T̃ = An

∑

~n

e−χλ~ntψ~n(~r).

where ω~n ≡ c
√
λ~n.
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• E.g. heat equation on a 2d rectangle with S = 0. Then ∇2Teq(x, y) = 0 requires

solving the Laplace equation with appropriate BCs. The solution for T̃ (x, y, t) is obtained

by separation of variables. For example, with Dirichlet BCs at the ends get

T̃ =
∑

n>0

∑

m>0

An,me
−χπ2(n2/a2+m2/b2)t sin(nπx/a) sin(mπy/b)

where An,m is obtained from the initial conditions as

An,m =
4

ab

∫ a

0

dx

∫ b

0

dy sin(nπx/a) sin(nπy/b)(T0(x, y)− Teq(x, y)).

• In cylindrical coordinates (ρ, φ, z) and spherical coordinates (r, θ, φ) we have

∇2ψ =
1

ρ
∂ρ(ρ∂ρψ) +

1

ρ2
∂2φψ + ∂2zψ =

1

r
∂2r (rψ)−

1

r2
L2ψ,

where, to save space (and because it is related to angular momentum) I have defined

−L̂2ψ ≡ 1

sin θ
∂θ(sin θ∂φψ) +

1

sin2 θ
∂2φψ.

Consider first the φ derivatives, we have

−∂2φΦ(φ) = −m2Φ(φ), Φ(φ) = eimφ.

For cylindrical coordinates separation of variables gives

∂2zZ(z) = −k2zZ(z),

where we will either take kz real or kz imaginary depending on the setup. For example,

consider ∇2φ = 0. Then, taking φ = R(ρ)Φ(φ)Z(z) we see that the ∂2φ term is negative

so to get ∇2φ = 0 we need some positive contributions, i.e. we need exponential behavior

in either the z or the ρ direction. Which one is determined by the BCs, either we’ll need

oscillating solutions in z or oscillating in ρ, and then the other must be exponential.

First recall 2d from last time: the solutions are φ = A0 +B0 ln r +
∑

m 6=0(Amr
|m| +

Bmr
−|m|)eimθ. E.g. suppose that there is a cylinder of radius a and the potential at r = a

is Va(θ). The solution for r < a has Bm = 0 and the solution for r > a has Am = 0. The

solution on the boundary has e.g. Ama
|m| =

∮
dθVa(θ)e

−imθ/2π, i.e. the familiar Fourier

transform expressions.
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For 3d cylindrical, we have φ(r, θ, z) = R(r)Θ(θ)Z(z) with Z ′′ = k2Z with, taking

u ≡ kr the equation for R(u) is the Bessel equation: R′′+u−1R′+(1−m2u−2)R = 0. E.g.

φ(r, θ, z = 0) = 0, φ(r, θ, z = L) = V0(r, θ) and φ(a, θ, z) = 0 has solution Θ(θ) = eimθ

and Z(z) = sinh(kmnz) and Rm,n(r) = AJm(kmnr) + BNm(kmnr) where B = 0 for the

solution be be finite at r = 0 and kmn = jmn/a and jmn = BesseJZero[m,n].

φ(r, θ, z) =

∞∑

m=−∞

∞∑

n=1

Am,ne
imφJm(kn,mr) sinh(kn,mz).

where we get An,m by inverting the requirement that φ(r, θ, L) = V0(r, θ). This is done by

using orthogonality properties of the Bessel functions:

∫ a

0

rJn(xn,mr/a)Jn(xn,m′r/a)dr = 1
2
a2Jn+1(xn,m)2δm,m′ .

• Spherical: take ψn,ℓ,m(r, θ, φ) = Rn,ℓ(r)Yℓ,m(θ, φ), where the Yℓ,m are eigenvalues of

L̂2 defined above:

−L̂2Yℓ,m = −ℓ(ℓ+ 1)Yℓ,m(θ, φ),

with ℓ = 0, 1, 2 . . .. This might look familiar from QM, and you will see a lot more

of it in the upper division QM class. The Yℓ,m form a complete basis for functions

of θ and φ with the usual periodicity. Expanding functions in terms of them is con-

ceptually similar to a Fourier transform, but in both θ and φ. They are given by

Yℓ,m =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos θ)eimφ where Pm

ℓ (cos θ) the associated Legendre functions.

Mathematica: Pm
ℓ (x) = LegendreP [l,m, x].

Separation of variables then gives

∇2ψ = −λψ, ψ = Rn,ℓ(r)Yℓ,m(θ, φ), r−1(rR)′′ − ℓ(ℓ+ 1)R

r2
= −λR.

For the Laplace equation, λ = 0, the solutions of the radial equation are Rℓ,m(r) =

Aℓ,mr
−ℓ−1 + Bℓ,mr

ℓ. Example: find the potential outside of a sphere of radius

a with V (a, θ, φ) = V0(Ω). Then φ =
∑

ℓ,mAℓ,mr
−ℓ+1Yℓ,m where Aℓ,ma

−ℓ+1 =
∫
dΩY ∗

ℓ,m(Ω)V0(Ω). E.g. for V0(Ω) = V0H(π/2 − θ) get Aℓ,m 6=0 = 0, and can do needed

integral via Mathematica.

For the 3d wave equation, there is a triple sum, e.g. n, ℓ,m, where ℓ,m are the usual

Yℓ,m labels, and n comes from the radial solution. Solutions of the Schrodinger equation

in QM have the same labels, for the same reason, e.g. the solutions of the Hydrogen atom

have ℓ,m giving the angular momentum eigenvalues.
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• Disk drum example: ψ(a, θ, t) = 0 with ψ(r, θ, 0) = z0(r, θ) and ∂tψ(r, θ, 0) =

v0(r, θ). Separate variables as ψ = f(t)R(r)eimθ and then ∂2t f = −ω2
m,nf where ωm,n

are found from r−1∂r(r∂rR) − r−2m2R = −ω2
m,nR/c

2, which is Bessel’s equation, with

Rm,n(r) = AJm(ωm,nr/c) +BYm(ωm,nr/c), with B = 0 to have non-singular behavior at

r = 0 (or A = 0 for non-singular at r → ∞). The n index labels the locations of the zeros

of the Bessel’s equations solutions, Jm(jm,n) = 0.

Traveling wave solutions, e.g. Am,ne
i(mθ−ωm,nt)Jm(jm,nr/a).

• Oscillations of the surface of a sphere: (∂2t − c2 ∇2)ψ = 0 in spherical coordinates,

taking r = R constant:

ψ(t,Ω) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

(Aℓ,m cosωℓt+Bℓm sinωℓt)Yℓ,m(Ω)

with ωℓ = c
√
ℓ(ℓ+ 1)/R.

• Wave equation in spherical coordinates: get

ψ =
∑

n

∞∑

ℓ=0

ℓ∑

m=−ℓ

(Aℓm cosωℓmnt+Bℓm sinωℓmnt)Rℓn(r)Yℓ,m(θ, φ).

where R′′ + 2r−1R′ + (k2 − ℓ(ℓ + 1)r−2)R = 0 is related to the spherical Bessel equation

and k = ω/c. The solutions are Rℓ = jℓ(kr) + nℓ(kr), where jℓ is the solution that

works for r → 0. The integer n is determined by some boundary conditions in r, e.g.

for Dirichlet boundary conditions it labels the zeros of jℓ. E.g. j0(x) = sinx/x, j1(x) =

sinx/x2 − cosx/x, n0 = − cosx/x, etc.

• Heat or wave equation in cylindrical coordinates: ∇2ψn,m,k = −λn,m,kψn,m,k with

e.g. ψn,m,k = Jm(jm,nr/a)e
imφ sin(kπz/L) and λn,m,k = jn,m/a+ (kπ/L)2.
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