
Physics 105a, Ken Intriligator lecture 3, October 5, 2017

• Summary from where we ended last time: we can take any function f(x) and

try to promote it to a function f(z = x + iy) on the complex plane by just replacing

x → z. In order for the derivatives of f(z) to be well defined, we need to get the same

answer if we take dz = dx or dz = idy, and this gives the Cauchy Riemann equations. If

f(z) =
∑

∞

n=−∞
anz

n, the term with n = −1 is special: that term is called a pole, and its

coefficient, an, is called the residue of the function at that pole. More generally, there is

a pole near some point z0 if f(z ≈ z0) = (coeff)(z − z0)
−1 + . . ., where the coefficient is

called the residue of the pole at z0, and none of the other terms in . . . matter. Aside: if

f(z) = (z−z0)
p+ . . . for p not an integer, then there is a ”cut” starting at z0, e.g.

√
z − z0.

Cauchy’s theorem says that
∮
C
f(z)dz is 2πi

∑
poles residues, where the poles are those

inside of C (and we need to avoid any cuts or take care when crossing it, or sometimes it’s

useful to hug around either side of a cut and account for the difference). There are many

applications to physics. We will only scratch the surface of these methods in this class.

• Plot in mathematica (using VectorPlot of the real and imaginary parts) e.g. f(z) =

zn for various n, f(z) = z̄ (not analytic), z1/2, z1/3.

• Note that the CR equations imply that ℜf(z) and ℑf(z) are solutions of the 2d

Laplace equations; examples. Useful for e.g. some electrostatics problems. Verify it for

some examples using Mathematica.

• Discuss
∮
C
dz/z = 2πi in terms of z−1 = ∂z log z and the behavior of log z in the

complex plane.

• Write f(z)dz in terms of real and imaginary parts, and then as ( ~F · dℓ, (d~ℓ × ~F ),

with ~F = (u,−v), and note that the CR equations imply that ~F has no divergence or

curl, clarifying why
∮
f(z)dz is “almost zero”, up to the effects from the poles. Indeed,

the poles are places where singularities of the derivatives of a certain type. This is related

to the fact that log(z − z0) is a Green’s function for the 2d Laplacian. We will discuss

Green’s functions later.

• Continue with example of
∫
∞

0
dx(1+ x2)−1 = π/2 and show that one gets the same

answer if C is closed instead in the lower half plane, accounting for the sign convention.

• Other examples of evaluating integrals by Cauchy’s theorem.
∫ π

0
dθ/(a+ b cos θ) =

π/
√
a2 − b2,

• Residues and poles of π/ sin(πz) and π cos(πz)/ sin(πz) and applications of Cauchy’s

theorem to evaluate some sums,
∑

∞

n=1
f(n). Examples.
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• Example: consider an L, R circuit, driven by source V (t) = A
∫
eiωtdω/2π; this

source corresponds to a voltage spike at time t = 0. Find I(t) = A
∫
(R + iωL)−1dω/2π.

Discuss where to close the contour and get I(t < 0) = 0 and I(t > 0) = (A/L)e−Rt/L –

makes sense.

• Gamma function Γ(z); give integral definition and type it into mathematica, Γ(z +

1) = zΓ(z) and relation to factorial. Poles at x = 0 and negative integers. Check with

mathematica. Also Γ(z)Γ(1− z) = π/ sin(πz).

• Gaussian integral, including in multi-dimensions. Normalization of the normal dis-

tribution. Relation to spherical integrals and solid angles.

• Suppose that we want to solve the ODE d2x
dt2

= f(x, ẋ), where f is some given

function, e.g. f = −ω2

0
x− γv for the case of a damped SHO. Note that we are here taking

f(x, ẋ) to not depend explicitly on t. Plot (x, ẋ, t) and discuss projection of motion onto

the (x, ẋ) plane. Discuss example in cell 1.6 of Chapter1.nb. It is often useful to use p

instead of ẋ (in simple cases, this is just a rescaling as p = mẋ). Plot phase space motion

for the solution of the undamped SHO.

• Non- dissipative systems have conserved energy and the flow in the (x, v) plane has

zero divergence. Hence the area in phase space is constant in time.

• Hamiltonian flows: H(x, p, t) with ẋ = ∂pH and ṗ = −∂xH. Discuss Ḣ vs ∂tH and

show that Ḣ = 0 if ∂tH = 0: this is conservation of energy if the system does not explicitly

depend on t. You will learn more about this in physics 110.
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