
Physics 105a, Ken Intriligator lecture 6, October 13, 2017

• Phase space motion from Hamilton’s equations: H(x, p, t) with ẋ = ∂pH and ṗ =

−∂xH. SHO example. Discuss Ḣ vs ∂tH and show that Ḣ = 0 if ∂tH = 0: this is

conservation of energy if the system does not explicitly depend on t. Get dH = 0, so the

flow is along surfaces of constant H. You will learn more about this in physics 110.

• Consider the differential equation d2ψ
dt2

+ γ dψ
dt

+ ω2

0
ψ = f(t), where γ and ω2

0
are

constants and f(t) is some given function. This equation arises in the forced, damped,

harmonic oscillator, where ψ(t) = x(t). It also arises in a circuit with an inductor L,

resistor R, and capacitor C, where ψ(t) = q(t) is the charge on the capacitor, γ = R/L,

ω2

0
= 1/LC, and f(t) = v(t)/L.

More generally, consider a linear N -th order differential equation Lψ(t) = f(t), where

L is a linear differential operator:

L ≡

N
∑

n=0

an
dn

dtn
.

The solution is given by a superposition of homogenous and particular solutions: ψ =

ψh + ψp, where Lψh = 0, and Lψp = f(t). Let’s first consider the homogenous equation,

i.e. for now we set f(t) = 0. Since we effectively need to integrate N times, there should

be N undetermined constants, which can be fully determined if N initial conditions are

specified. When solving ~F = md2~x
dt2

, we have N = 2, and the motion can be specified by

the initial position and initial velocity.

We will soon discuss boundary value problems, where instead of specifying values of

ψ and its derivatives at one location of the variable, instead values of the solution (and/or

its derivative) are specified at different locations of the variable.

• Solve Lψ = 0 by superposition (since it’s linear): ψ = Re(
∑N
n=1

cne
snt), where

cn are the N expected constants of integration and sn are found by computing Lest and

setting it to zero, i.e. they are the solutions of the polynomial equation
∑N
n=0

ans
n = 0.

• Example: damped harmonic oscillator, get s2 + γs + ω2

0
= 0, so s = 1

2
(−γ ±

√

γ2 − 4ω2

0
). Note that we are solving this over the complex values of s, so we always get

two solutions. If γ2 > 4ω2

0 , this is the over damped case, and both solutions have real

s, i.e. the solutions are exponentials in t. For γ > 0, both solutions are exponentially

decaying for t→ +∞. If γ2 < 4ω2

0
(under-damped case) the solutions are s = −

1

2
γ ± iω1,

where ω1 =
√

ω2

0
−

1

4
γ, i.e. we get ψh(t) = e−

1

2
γt(A cos(ω1t) + B sin(ω1t)). If γ2 = 4ω2

0

(critically damped case), there seems to be only one solution. But there must be two.
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To get insight into the critically damped case, consider as a warm-up the differential

equation dNψ
dtN

= 0. If we plug in est, we get sN = 0, which seems to suggest ψ = c a

constant as the only solution. There must be N independent solutions, and indeed there

are: ψ =
∑N−1

n=0
cnt

n. We can sort of understand them from est with sN = 0: Taylor

expand and keeping powers of (st) up to sN = 0 gives the correct solution. Likewise,

whenever the roots of the polynomial equation for s coincide, we get solutions like est

multiplied by powers of t.

In particular, in the critically damped SHO case, get ψ(t) = e−
1

2
γt(A+Bt).

• We will later study some general methods to determine the particular solution to

Lψp(t) = f(t) for general f(t). For the moment, consider the case where f(t) = Ref0e
−iωt

and note that the particular solution can be found by an obvious guess: ψp(t) = ReCe−iωt.

Plugging in get
∑

n an(−iω)
nC = f0, which we can solve for C.

For example, for the damped SHO we get C = f0(−ω
2
− iωγ + ω2

0)
−1 = f0(ω

2
0 −

ω2 + iωγ)((ω2

0
− ω2)2 + γ2ω2)−1. The magnitude is largest for ωres =

√

ω2

0
−

1

2
γ2. The

imaginary part is a phase shift lag between the forcing motion and the oscillation.

• Now consider differential equations with boundary value conditions. For example,

consider Lψ = 0 with L = d2

dt2
− ω2, or L = d2

dx2 − k2. These are the same equation

mathematically, and physically we use different names because sometimes we have such

equations in time, and other times we have such equations in space. Suppose e.g. we try

to specify ψ(t) = ψ(t + T ); this only has a solution if T = 2π/ω. Likewise if we try to

specify ψ(x) = ψ(x+λ), there is only a solution if k = 2π/λ. Such equations and boundary

conditions e.g. give the allowed frequencies or wavenumber of waves on strings, or musical

instruments, or the allowed energy levels in quantum mechanics. This illustrates that

boundary value problems do not always have a solution - it depends on if the boundary

conditions are compatible, like trying to fit different pieces of a jigsaw puzzle together.

• Numerical solutions of boundary value problems by the shooting method. E.g.
d2y
dt2

= f(y, ẏ, t) with y(t0) = y0 and y(t1) = y1. Guess ẏ(t0) to try to get y(t1) = y1, and

adjust as needed. Example from Dubin 1.70.

• Think about solving Lψ = f in analogy with a matrix equation, where L is a matrix

and ψ and f are column vectors. Then ψh is in the nullspace of L, and ψp = L−1f , where

L−1 is the inverse in the directions orthogonal to the nullspace. We are literally doing this

when we numerically solve the differential equation by making the coordinate a lattice of

points, as in the Euler’s method example. Replace e.g. d
dt

→ Ln,m = (δn,m − δn−1,m)/∆t.

• Example from Dubin 1.6.3: L = d
dt

+ u0(t) via Euler’s method. Consider u0(t) = 1.
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