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• Recall periodic f(t+ T ) = f(t) has a Fourier expansion

f(t) =
∞∑

n=−∞

f̃ne
−2πint/T = a0 +

∞∑
n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )).

With

f̃n =

∫ T+t0

t0

dt

T
f(t)e2πint/T .

Or equivalently

a0 =

∫ T+t0

t0

dt

T
f(t), am>0 = 2

∫ T+t0

t0

dt

T
f(t) cos(2πmt/T ), bm>0 = 2

∫ T+t0

t0

dt

T
f(t) sin(2πmt/T ),

Note that, for real f(t), f̃n = f̃∗

−n. The exponential and sin and cos forms are related by

f̃0 = a0, f̃n>0 = 1
2
(an + ibn), f̃n<0 = 1

2
(a−n − ib−n).

• Aside: can write it in QM notation (which is a convenient way to write basis vectors

and their inner products): |f〉 =
∑

n f̃n|n〉, where f̃n = 〈n|f〉 and 〈n|m〉 = δn,m. Now

〈t|n〉 = e−2πint/T /
√
T are the normalized basis vectors in t-space and the notation encodes

the fact that the inner product involves complex conjugation with 〈n|t〉 = 〈t|n〉∗ generally

complex. The orthogonality and completeness relations can be written as
∫ T+t0
t0

dt|t〉〈t| = 1

and
∑

n |n〉〈n| = 1, the unit operator (think of it as a matrix with 1’s on the diagonals

and 0’s off-diagonal).

• Approximate the function by keeping up to M terms in the Fourier sum:

fapprox(t,M) =

M∑
n=−M

f̃ne
−2πint/T = a0 +

M∑
n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )).

We saw examples using Mathematica, comparing to f(t) and plotting ferror(t,M) = f(t)−
fappox(t,M).

•We discussed the square and triangle wave examples, and briefly illustrated the Gibbs

phenomenon with Mathematica. Continue with that. Recall that the square wave had

an = 0 since it was defined to be an odd function and b2m = 0 and b2m+1 = 4/(2m+ 1)π.

So

fapprox(t,M) =
4

π

M∑
n=odd=1

1

n
sin(2πnt/T ).

Because the function is discontinuous, ferror(t,M) = f(t) − fappox(t,M) does not go to

zero for M → ∞. To see that, do some substitutions such that the M → ∞ limit of
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fapprox(t,M) will look nicer: substitute τ = Mt/T and s = n/M to get, with ∆s =

2/M → 0,

fapprox →
1∑

s=odd∆s/2

∆ss−1 sin(2πsτ) →
∫ 1

0

1

s
sin(2πsτ)ds =

2

π
SinIntegral[2πτ ].

Consider derivative and where it vanishes. The maximum overshoot is at τ = 1/2. Con-

tinue with mathematica.

• Solving the forced, damped, SHO for general periodic functions via Fourier series.

Write xp(t) =
∑

n x̃ne
−inω1t and f(t) =

∑
n f̃ne

−inω1t, where ω1 = 2π/T . Relate x̃n to f̃n

as in last week’s discussion of the forced SHO:

x̃n = f̃n/(−(nω1)
2 − inγnω1 + ω2

0).

As we saw last week, this has a magnitude and a phase, and the phase gives a lag between

the forcing and the response. For high frequency modes, n ≫ 1, find x̃n ≈ −f̃n/(nω1)
2,

so the response falls off with two more powers of 1/n than the forcing. For small n, get

x̃n ≈ f̃n/ω
2
0 , which is simply xp(t) ≈ −f(t)/k for the slowly varying terms in f(t). When

the denominator in the relation between x̃ and f̃ is small, those modes are near resonance

and thus amplified relative to the others.

• Fourier series for functions on a finite interval, via periodic extension. Examples with

f (p)(t+T ) = f(t), where T = ∆t of the original interval. Such functions are discontinuous

generally, so the Fourier sums do not converge uniformly to the original function: their

F.T. displays Gibbs phenomena at the boundary of the interval. Show in mathematica.

An alternative is to define the function outside of the interval to have period 2T

and make it an even function, reflecting it around one endpoint. Then the function

will be continuous everywhere, though with generally discontinuous first derivative. The

Fourier transforms approximate the function better than the original ones. Examples with

f (e)(t) = f (e)(t + 2T ), where the function in the range t ∈ [t0 − T, t0] is defined via

f (e)(t) = f(2t0 − T ), making it even upon reflection at t0, so it has half as many jumps.

Alternatively, take f (o)(t) = f (o)(t+2T ) with f (o)(t) = −f(2t0−t) in the range [t0−T, t0],

so get sin’s instead of cos’s in expansion around t0. Note the better falloff for the odd ex-

tension w.r.t. the mode number n, for fixed function f(t), as compared with the original

or the even extension.

• Solving boundary value problems using Fourier series, e.g. for the shaken spring

demo. Examples with φ(x) and ∂2
xφ = −ρ(x) with Dirichlet (fixed value) and boundary,

say φ(0) = φ0 and φ(L) = φ1, do expansion in sin(nπx/L). For Neumann boundary

conditions the derivatives at the endpoints are instead specified, and then we can instead

expand in cos(nπx/L).
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