215a Homework exercises 1, Fall 2019, due Oct. 7

"Tong problem n.m" refers to exercise set n, problem m. Follow links from website.

1. Consider a complex scalar field with

$$\mathcal{L} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^{2} \phi^{\dagger} \phi - \frac{\lambda}{2} (\phi^{\dagger} \phi)^{2}$$

Note that the theory is invariant under $\phi \to e^{i\alpha}\phi$, with α constant (i.e. a global symmetry). Derive the associated Noether current and verify that it is conserved, using the field equations satisfied by ϕ .

- 2. Tong problem set 1, exercise 8.
- 3. Tong problem set 1, exercise 9. Please call the scaling dimension Δ instead of D, and another notation is to write $[\phi]$, where the square brackets means the scaling mass dimension of ϕ , e.g. in $\hbar = c = 1$ units [E] = [m] = [p] = [1/t] = [1/L] = 1, and $[S] = [\hbar] = 0$ in any spacetime dimension.
- 4. Consider a complex scalar field with

$$\mathcal{L} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^2 \phi^{\dagger} \phi$$

Define

$$\phi(x) \equiv \int \frac{d^3k}{(2\pi)^3 2\omega_k} \left(a(k)e^{-ik\cdot x} + b^{\dagger}(k)e^{ik\cdot x} \right).$$

$$\phi^{\dagger}(x) \equiv \int \frac{d^3k}{(2\pi)^3 2\omega_k} \left(a(k)^{\dagger} e^{ik \cdot x} + b(k) e^{-ik \cdot x} \right).$$

- (a) Find the units [a(k)] and [b(k)].
- (b) Find the conjugate coordinate $\Pi(x)$ to $\phi(x)$. Also find the units $[\Pi(x)]$.
- (c) Impose the canonical equal-time commutation relation $[\phi(\vec{x},t),\Pi(\vec{y},t)]=i\delta^3(\vec{x}-\vec{y})$ and show this implies that $[a(k),a^{\dagger}(k')]=[b(k),b^{\dagger}(k)]=(2\pi)^32\omega_k\delta^3(\vec{k}-\vec{k}')$, with all other commutators vanishing. Verify that these are compatible with [a(k)] and [b(k)].
- (d) Recall from question 1 that there is a conserved current, $j^{\mu}(x)$ with $\partial_{\mu}j^{\mu}=0$, corresponding to the $\phi \to e^{i\alpha}\phi$ symmetry. Write the corresponding charge $Q=\int d^3x j^0$ as $Q=\int d^3k\dots$, where ... is in terms of things like a(k) and b(k). Write Q as a normal ordered expression, so $Q|0\rangle=0$. Verify that Q is dimensionless, i.e. that [Q]=0.
 - (e) Verify that $a^{\dagger}(k)|0\rangle$ and $b^{\dagger}(k)|0\rangle$ are eigenstates of Q. What are their eigenvalues?