215a Homework exercises 2, Fall 2019, due Oct. 14

"Tong problem n.m" refers to exercise set n, problem m. Follow links from website.

1. Consider the KG theory $\mathcal{L}_{KG} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$. (a) Let $|p\rangle$ be the one-particle state $a^{\dagger}(p)|0\rangle$. Show that

the one-particle state
$$a^{(p)}|_0$$
. Show the

$$|0|\phi(x)|p\rangle = e^{-ip \cdot x}$$

(b) Using the expressions given in lecture for H and \vec{P} , show that

$$[P^{\mu},\phi(x)] = -i\partial^{\mu}\phi(x).$$

2. In lecture, we used Fourier transforms to construct Greens functions for the Klein-Gordon equation. In this exercise, you will explicitly verify that

$$\left(\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial x_{\mu}} + m^2\right) \langle 0|T(\phi(x)\phi(y))|0\rangle = C\delta^4(x-y),$$

and determine the constant C. Don't use the Fourier transforms from lecture. Instead just use the KG field equation for $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$, the equal time commutation relations, and the definition of the time ordered product T. Hint: use the definition of Tinvolving $\theta(x^0 - y^0)$ and $\theta(y^0 - x^0)$, and the fact that the derivative of the theta function gives a delta function.

This exercise illustrates that equations of motion, which are operator equations, don't necessarily give zero in time ordered correlation functions – instead, it can give contact interactions when the operator points coincide. We'll soon see similar effects with current conservation laws, which can also have specific contact interactions when $\partial_{\mu} j^{\mu}(x)$ is in a correlation function (these are called Ward identities).

- 3. Tong problem set 2, exercise 9 (i.e. explicitly verify Wick's theorem for the case of three scalar field operators).
- 4. This is a warm-up or review of the path integral description of quantum mechanics (and Gaussian integrals). Consider the propagator of 1d QM: $K(x_2, t_2; x_1, t_1) \equiv$ $\langle x_2|U(t_2,t_1)|x_1\rangle$, i.e. the probability amplitude to go from initial position x_1 at time t_1 to final position x_2 at time t_2 . Suppose that $H = \frac{1}{2m}p^2 + V(x)$ is time independent, so $U = e^{-iHT/\hbar}$ with $T \equiv t_2 - t_1$.

(a) Compute K_{free} for the case of a free particle V = 0 by inserting $1 = \int \frac{dp}{2\pi} |p\rangle \langle p|$ and doing the Gaussian integral (recall that $\int dx e^{-\lambda x^2} = \sqrt{\pi/\lambda}$ and for the moment just assume that this works even if λ is imaginary).

(b) Verify that $K_{free} = f(T)e^{iS_{cl}/\hbar}$ where S_{cl} is the classical action for the path.

(c) Argue (for any V(x)) that $K(x_3, t_3; x_1, t_1) = \int dx_2 K(x_3, t_3; x_2, t_2) K(x_2, t_2; x_1, t_1)$ assuming that $t_3 \ge t_2 \ge t_1$. Explicitly verify this for K_{free} by doing the $\int dx_2$ integral.