"Tong problem $n . m$ " refers to exercise set n, problem m. Follow links from website.

1. Consider the KG theory $\mathcal{L}_{K G}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}$.
(a) Let $|p\rangle$ be the one-particle state $a^{\dagger}(p)|0\rangle$. Show that

$$
\langle 0| \phi(x)|p\rangle=e^{-i p \cdot x}
$$

(b) Using the expressions given in lecture for H and \vec{P}, show that

$$
\left[P^{\mu}, \phi(x)\right]=-i \partial^{\mu} \phi(x)
$$

2. In lecture, we used Fourier transforms to construct Greens functions for the KleinGordon equation. In this exercise, you will explicitly verify that

$$
\left(\frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x_{\mu}}+m^{2}\right)\langle 0| T(\phi(x) \phi(y))|0\rangle=C \delta^{4}(x-y)
$$

and determine the constant C. Don't use the Fourier transforms from lecture. Instead just use the KG field equation for $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}$, the equal time commutation relations, and the definition of the time ordered product T. Hint: use the definition of T involving $\theta\left(x^{0}-y^{0}\right)$ and $\theta\left(y^{0}-x^{0}\right)$, and the fact that the derivative of the theta function gives a delta function.

This exercise illustrates that equations of motion, which are operator equations, don't necessarily give zero in time ordered correlation functions - instead, it can give contact interactions when the operator points coincide. We'll soon see similar effects with current conservation laws, which can also have specific contact interactions when $\partial_{\mu} j^{\mu}(x)$ is in a correlation function (these are called Ward identities).
3. Tong problem set 2 , exercise 9 (i.e. explicitly verify Wick's theorem for the case of three scalar field operators).
4. This is a warm-up or review of the path integral description of quantum mechanics (and Gaussian integrals). Consider the propagator of 1d $\mathrm{QM}: K\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \equiv$ $\left\langle x_{2}\right| U\left(t_{2}, t_{1}\right)\left|x_{1}\right\rangle$, i.e. the probability amplitude to go from initial position x_{1} at time t_{1} to final position x_{2} at time t_{2}. Suppose that $H=\frac{1}{2 m} p^{2}+V(x)$ is time independent, so $U=e^{-i H T / \hbar}$ with $T \equiv t_{2}-t_{1}$.
(a) Compute $K_{\text {free }}$ for the case of a free particle $V=0$ by inserting $1=\int \frac{d p}{2 \pi}|p\rangle\langle p|$ and doing the Gaussian integral (recall that $\int d x e^{-\lambda x^{2}}=\sqrt{\pi / \lambda}$ and for the moment just assume that this works even if λ is imaginary).
(b) Verify that $K_{\text {free }}=f(T) e^{i S_{c l} / \hbar}$ where $S_{c l}$ is the classical action for the path.
(c) $\operatorname{Argue}($ for any $V(x))$ that $K\left(x_{3}, t_{3} ; x_{1}, t_{1}\right)=\int d x_{2} K\left(x_{3}, t_{3} ; x_{2}, t_{2}\right) K\left(x_{2}, t_{2} ; x_{1}, t_{1}\right)$ assuming that $t_{3} \geq t_{2} \geq t_{1}$. Explicitly verify this for $K_{\text {free }}$ by doing the $\int d x_{2}$ integral.

