1. Question 2 on Tong's example sheet 4. Also for each diagram determine the symmetry factor (recall this is from the factors of $1 / 4$! that accompany the λ and that are usually canceled by the 4 ! combinatoric choices of which vertex leg gets Wick contracted with something else, but if the internal propagator contractions have some permutation symmetry then there is not an independent 4 ! factor for each vertex, so some of the $1 / 4$!s are incompletely canceled).
2. Consider the theory of a scalar field ϕ with $\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{g}{3!} \phi^{3}$.
(a) What is the leading order S-matrix $\left\langle\phi\left(p_{2}\right) \phi\left(p_{3}\right)\right| S\left|\phi\left(p_{1}\right)\right\rangle$ and corresponding amplitude for the process $\phi\left(p_{1}\right) \rightarrow \phi\left(p_{2}\right)+\phi\left(p_{3}\right)$? Draw the Feynman diagram and write out the Feynman rules in momentum space.
(b) Draw all of the Feynman diagrams for the same $\phi \rightarrow \phi \phi$ process at the next order in perturbation theory. Write down the mathematical expression for each of these diagrams (do not attempt to evaluate the integral, since they require a regulator and further discussion).
(c) Write down the position space Greens function $G^{(3)}\left(x_{1}, x_{2}, x_{3}\right)$ to order g^{3} in perturbation theory, by considering Feynman diagrams in position space.
(d) Consider the $G^{(3)}\left(x_{1}, x_{2}, x_{3}\right)$ contribution from part (c) whose diagram consists of a circle with three attached legs. Fourier transform and apply LSZ to this contribution and verify that this gives a contribution to $\left\langle\phi\left(p_{2}\right) \phi\left(p_{3}\right)\right| S\left|\phi\left(p_{1}\right)\right\rangle$ that agrees with the corresponding momentum space Feynman diagram that you found in part (b).
3. Consider the quantum mechanical simple harmonic oscillator, with $L=\frac{1}{2} \dot{q}^{2}-\frac{1}{2} \omega^{2} q^{2}$. Write down $q_{H}(t)$ in terms of the usual creation and annihilation operators and verify (a)

$$
\begin{gathered}
\langle 0| T q_{H}\left(t_{1}\right) q_{H}\left(t_{2}\right)|0\rangle=-i G_{S H O}\left(t_{2}-t_{1}\right), \\
G_{S H O}(t)=\int_{-\infty}^{\infty} \frac{d E}{2 \pi} \frac{e^{-i E t}}{-E^{2}+\omega^{2}-i \epsilon}=\frac{i}{2 \omega} e^{-i \omega|t|} .
\end{gathered}
$$

(b)

$$
\langle 0| T q_{H}\left(t_{1}\right) q_{H}\left(t_{2}\right) q_{H}\left(t_{3}\right) q_{H}\left(t_{4}\right)|0\rangle=(-i)^{2}\left(G_{S H O}\left(t_{2}-t_{1}\right) G_{S H O}\left(t_{3}-t_{4}\right)+\text { perms }\right),
$$

where perms denote similar terms with $t_{2} \leftrightarrow t_{3}$ and $t_{2} \leftrightarrow t_{4}$.

