
9/30/19 Lecture outline

⋆ Reading: Coleman lectures 0-2. Tong chapter 0-1.

• In QM we learn [x, p] = ih̄ whereas t is not quantized. It clearly violates relativity

to treat x as an operator and t as not an operator. Also, in QM we learn that 〈ψ|ψ〉 = 1,

where e.g. |ψ〉 is the state of a single electron. But in general particle number is not

conserved. Quantum mechanics (QM) is an approximation to a deeper structure, quantum

field theory (QFT), which is the subject of this class. The particles are actually ripples

of fields, e.g. φ(t, ~x) and we quantize the fields φ themselves, with ~x a parameter, not a

quantum operator. Actually, QM can be reinterpreted as a QFT in 0 space and 1 time

dimension, by thinking about the positions qi(t) as the field operators.

• Non-relativistic QFT can be appropriate in condensed matter and other contexts.

This class will focus on relativistic QFT. Conventions: h̄ = c = 1, mostly minus metric

gµν , e.g. ∂µ = (∂t, ~∇), ∂µ∂
µ ≡ ∂2 = ∂2t − ∇2.

• Q: “What goes wrong if we just do the single-particle S.E. with Hrel =
√

~p2 +m2?”

A: many things. One question is how to make sense of H =
√

~P 2 +m2, where ~P is an

operator. How do you take a square-root of an operator? This question led Dirac to his

equation, which describes fermions. Requires anti-matter to make sense of it. Can’t have

well-defined single-particle states. Here let’s illustrate another issue: correlators outside

the forward light-cone. Recall that any point outside the light-cone can be mapped by

a Lorentz transformation to any other point, and that signals sent outside the light-cone

can then be used to transmit information back in time, violating causality. As far as we’re

aware, that is illegal. Start with |ψ(t = 0)〉 = |~x = 0〉. Compute, for r > t,

〈~x|ψ(t)〉 = 〈~x|e−iHt|~x = 0〉 =
∫

d3p

(2π)3
ei~p·~xe−i

√
~p2+m2t

= − i

(2π)2r

∫ ∞

−∞

pdpeipre−i
√

p2+m2t

= − ie
−mr

2π2r

∫ ∞

m

dzze−(z−m)r sinh(
√

z2 −m2t)

.

The last step is by deforming the contour in the complex p plane. For r > t we deform

the contour into the UHP, and get contributions along the branch cut in the UHP, with

z = −ip; you can verify that the contribution along the big semi-circle at infinity vanishes.

The integral is positive, so non-vanishing outside the forward light cone: acausal, with

causality recovered as an approximation for r ≫ m. In QFT, antiparticles to the rescue!
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The antiparticle contribution is added, and cancels the acausality. Must give up on purely

single-particle states.

• Multiparticle states. E.g. |~k1, ~k2, . . .~kn〉, with completness

1 = |0〉〈0|+
∞
∑

n=1

1

n!

∫

d3~k1
(2π)3

. . .
d3~k

(2π)3
|~k1 . . .~kn〉〈~k1 . . .~kn|.

Introduce a box for the moment, to make momenta discrete. Can then count how many

excitations of each momenta. Fock space, as with the excitation level of the SHO, with

creation and annihilation operators.

Recall the SHO: H = p2

2 + 1
2ω

2x2 = ω(a†a + 1
2) (setting m = 1), and [a, a†] = 1.

Ground state |0〉 s.t. a|0〉 = 0, and |n〉 = cn(a
†)n|0〉.

Likewise, define a(~k) and a†(~k) s.t. [a(~k), a†(~k′)] = δ~k~k′
for momenta in a box (will

generalize to continuous, with Dirac delta functions). The multiparticle states are then
∏n

i=1 a
†(~ki)|0〉, and H =

∑

~k
ω(~k)a†(~k)a(~k).

• Classical and quantum particle mechanics, L(qa, q̇a, t), pa = ∂L/∂q̇a, ṗa = ∂L/∂qa,

H =
∑

a paq̇a −L. Get quantum theory by replacing Poisson brackets with commutators,

[qa(t), pb(t)] = iδab. Recall OH(t) = eiHtOSe
−iHt and i d

dt
OH(t) = [OH(t), H].

• Classical field theory. E.g. scalars φa(t, ~x), with S =
∫

d4xL(φa, ∂µφa). Then
Πµ

a = ∂L/∂(∂µφa), and E.L. eqns ∂L/∂φa = ∂µΠ
µ
a . Define Πa ≡ Π0

a. H =
∫

d3x(Πφ̇a −
L) =

∫

d3xH.

Example: L = 1
2
(∂µφ∂

µφ − m2φ2), gives Π = φ̇ and Π̇ = ∇2φ − m2φ, the Klein-

Gordon equation: (∂2+m2)φ = 0. Can’t interpret φ as a probability wavefunction because

of solutions E = ±
√

~p2 +m2. But we’ll see that the KG equation is fine as a field theory.
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