- Last time:

$$
\frac{d P}{T}=\frac{V}{\prod_{i}\left(2 E_{i} V\right)}\left|\mathcal{A}_{f i}\right|^{2} d \Pi_{L I P S}, \quad d \Pi_{L I P S} \equiv(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}\right) \prod_{f} \frac{1}{(2 \pi)^{3}\left(2 E_{f}\right)} d^{3} p_{f}
$$

where $d \Pi_{L I P S}$ is the Lorentz invariant phase space for the final states. For two body final states (in CM frame): $D=\int d \Pi_{L I P S}=\int \frac{d^{3} \vec{p}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} \vec{p}_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{3}\left(\vec{p}_{1}+\vec{p}_{2}\right) \delta\left(E_{1}+E_{2}-E_{T}\right)$

$$
D=\int \frac{1}{(2 \pi)^{3} 4 E_{1} E_{2}} p_{1}^{2} d p_{1} d \Omega_{1}(2 \pi) \delta\left(E_{1}+E_{2}-E_{T}\right)
$$

Using $E_{1}=\sqrt{p_{1}^{2}+m_{1}^{2}}$ and $E_{2}=\sqrt{p_{1}^{2}+m_{2}^{2}}$ get $\partial\left(E_{1}+E_{2}\right) / \partial p_{1}=p_{1} E_{T} / E_{1} E_{2}$ and finally $D=p_{1} d \Omega_{1} / 16 \pi^{2} E_{T}$. This should be divided by $2!$ (i.e. $n_{f}!$) if the final states are identical.

- Summary:

$$
\begin{gathered}
d \Gamma_{1 \rightarrow 2}=\frac{|\mathcal{A}|^{2} D_{2-b o d y}}{2 M} \\
d \sigma_{2 \rightarrow 2}=\frac{|\mathcal{A}|^{2}}{4 E_{1} E_{2}} D_{2-b o d y} \frac{1}{\left|\vec{v}_{1}-\vec{v}_{2}\right|} \\
D_{2-b o d y(C M)}=\frac{p_{1} d \Omega_{1}}{16 \pi^{2} E_{C M}} \quad \text { (divide by } 2!\text { if identical final states). }
\end{gathered}
$$

- Example. For $\mu^{2}>4 m^{2}$, consider $\phi \rightarrow \bar{N} N$ decay in the toy model. $\mathcal{A}=-g+\mathcal{O}\left(g^{3}\right)$, and get

$$
\Gamma=\frac{g^{2}}{2 \mu} \frac{p_{1}}{16 \pi^{2} \mu} \int d \Omega_{1}=\frac{g^{2}}{8 \pi \mu^{2}} \frac{\sqrt{\mu^{2}-4 m^{2}}}{2}+\mathcal{O}\left(g^{4}\right)
$$

For $2 \rightarrow 2$ scattering in the CM frame,

$$
d \sigma=\frac{|\mathcal{A}|^{2}}{4 E_{1} E_{2}} \frac{p_{f} d \Omega_{1}}{16 \pi^{2} E_{T}} \frac{1}{\left|\vec{v}_{1}-\vec{v}_{2}\right|}=\frac{|\mathcal{A}|^{2} p_{f} d \Omega_{1}}{64 \pi^{2} p_{i} E_{T}^{2}}
$$

where we used $\left|\vec{v}_{1}-\vec{v}_{2}\right|=p_{1}\left(E_{1}^{-1}+E_{2}^{-2}\right)=p_{i} E_{T} / E_{1} E_{2}$ in the CM frame, and p_{i} is the magnitude of the initial 3 -momentum, and p_{f} is that of the final momentum; they can be different if the initial and final states are of particles of different masses, e.g. $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$.

- Let's now consider the theory with $\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$, with real scalar field ϕ and λ is a real coupling constant that we will take to be small and treat in perturbation theory. The requirement that the potential $V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}$ be bounded below requires $\lambda \geq 0$. There is a \mathbf{Z}_{2} symmetry $\phi \rightarrow-\phi$. For $m^{2}>0$, the potential has a single
vacuum at $\phi=0$. For $m^{2}<0$ there are two vacua at $\langle\phi\rangle$; this is an example of spontaneous (discrete) symmetry breaking, which will be discussed more later. We will take $m^{2}>0$.

Consider $\phi\left(p_{1}\right)+\phi\left(p_{2}\right) \rightarrow \phi\left(p_{1}^{\prime}\right)+\phi\left(p_{2}^{\prime}\right)$ scattering. The leading order amplitude is $\mathcal{A}=$ $-\lambda+\mathcal{O}\left(\lambda^{2}\right)$. The associated Born Approximation potential is $V(\vec{r})=-\frac{\lambda}{(2 m)^{2}} \int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \cdot \vec{r}}=$ $-\frac{\lambda}{(2 m)^{2}} \delta^{3}(\vec{r})$. Comment about the combinatorics. Write down the Feynman rules.

Now consider the $\mathcal{O}\left(\lambda^{2}\right)$ correction to $2 \rightarrow 2$ scattering: $i \mathcal{A} \supset(-i \lambda)^{2}(F(s)+F(t)+$ $F(u)$) where $F\left(p^{2}\right) \equiv \frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon} \frac{i}{(k+p)^{2}-m^{2}+i \epsilon}$ where the $\frac{1}{2}$ is a symmetry factor. The integral is log divergent for large k and requires being regulated and renormalization; this will be discussed next quarter.

- Amplitudes are computed from Feynman diagrams upon amputating the external propagators and putting the external states on shell (imposing $p_{i}^{2}=m_{i}^{2}$ for the initial and final states). It is also useful to consider the quantities without the external propagators amputated or on shell; these quantities are called Greens functions.
\star Reading for the upcoming part: Coleman lecture notes pages 140-175.
- Brief introduction to a better description of QFT and perturbation theory.]Define the true vacuum $|\Omega\rangle$ such that $H|\Omega\rangle=0$, and $\langle\Omega \mid \Omega\rangle=1$. The true vacuum of an interacting QFT is a complicated beast - it can be thought of roughly as a soup of particle-antiparticle states - it can not be solved for solved for exactly. (Progress: in classical mechanics, can solve 2 body problem exactly, but ≥ 3 body only approximately; in GR, can solve 1 body problem exactly, but ≥ 2 body only approximately; in QM can generally solve even only 1-body problem only approximately, but at least the 0-body problem is trivial; in QFT, even the 0 -body problem is not exactly solvable.)

Define Green functions or correlation functions by

$$
G^{(n)}\left(x_{1}, \ldots x_{n}\right)=\langle\Omega| T \phi_{H}\left(x_{1}\right) \ldots \phi_{H}\left(x_{n}\right)|\Omega\rangle
$$

where $\phi_{H}(x)$ are the full Heisenberg picture fields, using the full Hamiltonian.
Now show that

$$
G^{(n)}\left(x_{1} \ldots x_{n}\right)=\frac{\langle 0| T \phi_{1 I}\left(x_{1}\right) \ldots \phi_{n I}\left(x_{n}\right) S|0\rangle}{\langle 0| S|0\rangle}
$$

where $|0\rangle$ is the vacuum of the free theory, and $\phi_{i I}$ are interaction picture fields, and the S in the numerator and denominator gives the interaction-Hamiltonian time evolution from $-\infty$ to x_{n}, then from x_{n} to x_{n-1} etc and finally to $t=+\infty$. To show it, take $t_{1}>t_{2} \ldots>t_{n}$ and put in factors of $U_{I}\left(t_{a}, t_{b}\right)=T \exp \left(-i \int_{t_{a}}^{t_{b}} H_{I}\right)$ to convert ϕ_{I} to ϕ_{H}, $\operatorname{using} \phi_{H}\left(x_{i}\right)=U_{I}\left(t_{i}, 0\right)^{\dagger} \phi_{I}\left(x_{i}\right) U_{I}\left(t_{i}, 0\right)$.

