
11/4/19 Lecture outline

⋆ Reading for the upcoming part: Coleman lecture notes pages 140-175.

• Review Feynman rules for e.g. Hint =
λ
4!φ

4+ λ′

6!φ
6 and ask if there are any questions.

• Last time: brief introduction to a better description of QFT and perturbation theory

(Lehmann, Symanzik, Zimmermann reduction formula). Define the true vacuum |Ω〉 such
that H|Ω〉 = 0, and 〈Ω|Ω〉 = 1. The true vacuum of an interacting QFT is a complicated

beast – it can be thought of roughly as a soup of particle-antiparticle states – it can not be

solved for solved for exactly. (Progress: in classical mechanics, can solve 2 body problem

exactly, but ≥ 3 body only approximately; in GR, can solve 1 body problem exactly, but

≥ 2 body only approximately; in QM can generally solve even only 1-body problem only

approximately, but at least the 0-body problem is trivial; in QFT, even the 0-body problem

is not exactly solvable.)

Define Green functions or correlation functions by

G(n)(x1, . . . xn) = 〈Ω|TφH(x1) . . . φH(xn)|Ω〉,

where φH(x) are the full Heisenberg picture fields, using the full Hamiltonian.

Let’s consider them in the free KG example. Find e.g. G
(2)
0 (x, y) = h̄DF (x − y),

(where the subscript is to remind us it’s the free theory), G
(4)
0 = G

(2)
0 (x1, x2)G

(2)
0 (x3, x4)+

2 permutations, etc.

Now show that in full generality (for any theory)

G(n)(x1 . . . xn) =
〈0|Tφ1I(x1) . . . φnI(xn)S|0〉

〈0|S|0〉 ,

where |0〉 is the vacuum of the free theory, and φiI are interaction picture fields, and

the S in the numerator and denominator gives the interaction-Hamiltonian time evolution

from −∞ to xn, then from xn to xn−1 etc and finally to t = +∞. To show it, take

t1 > t2 . . . > tn and put in factors of UI(ta, tb) = T exp(−i
∫ tb
ta
dtHI) to convert φI to φH ,

using φH(xi) = UI(ti, 0)
†φI(xi)UI(ti, 0).

Get 〈0|UI(∞, t1)φH(t1) . . . φH(tn)UI(tn,−∞)|0〉, and UI at ends can be replaced with

full U(t1, t2), since H0|0〉 = 0 anyway. Now use

〈Ψ|U(t,−∞)|0〉 = 〈Ψ|U(t,−∞)

(
|Ω〉〈Ω|+

∑∫
|n〉〈n|

)
|0〉

= 〈Ψ|Ω〉〈Ω|0〉+ lim
t′→−∞

∑∫
eiEn(t′−t)〈Ψ|n〉〈n|0〉

= 〈Ψ|Ω〉〈Ω|0〉
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where 1 was inserted as a complete set of states, including the vacuum and single and

multiparticle states, including integrating over their momenta, but the wildly oscillating

factor kills all those terms. (Riemann-Lebesgue lemma: limt→∞

∫
dωf(ω)eiωt = 0 for nice

f(ω)) The result follows upon doing the same for the denominator.

The 〈0|S|0〉 in the denominator eliminates the vacuum bubble diagrams. So we have

G(n)(x1, . . . xn) =
∑

Feynman graphs without vacuum bubbles.

• Example: G(2)(x1, x2) in λφ4/4! theory is G(2)(x1, x2) = ∆F (x1 − x2) +
1
6
(−iλ)2

∫
d4y1

∫
d4y2∆F (x1 − y1)∆F (y1 − y2)

3∆F (y2 − x2) + . . . where the 1
6
is a sym-

metry factor from incompletely cancelling the two 1/4!s, and is evident from the 3!

permutation symmetry of the three internal propagators. Likewise, G(4)(x1, x2, x3, x4) in

λφ4/4! theory. For each line from x to y, get a factor of ∆F (x−y), and for each vertex at y

get −iλ
∫
d4y. Includes connected and disconnected diagrams. Disconnected ones will go

away when computing (S-1)-matrix elements. In the LSZ formula (below) this is thanks to

multiplying by factors of 0 associated with cancelling the external propagators, and those

zeros eliminate the disconnected terms, as they have too few propagators to survive.

• It’s often more convenient to work in momentum space,

G̃(n)(p1, . . . pn) =

∫ n∏

i=1

d4xie
−ipixiG(n)(x1 . . . xn).

Then e.g. G̃(2)(p1, p2) = (2π)4δ4(p1 + p2)
(

i
p2
1
−µ2+iǫ

)
(1 + . . .). Similar to what we com-

puted before to get S-matrix elements, but the external legs include their propagators, and

the external momenta are not on-shell. There is a momentum conserving delta function

with all momenta incoming.

• From Green functions G̃(n)(p1, . . . , pn), computed with external leg propagators,

allowed to be off-shell, to S-matrix elements. Then

〈kn+1 . . . kn+m|S−1|k1k2 . . . kn〉 =
n+m∏

j=1

k2j −m2
j

i
√
Zj

G̃(n+m(k1, k2, . . . , kn,−kn+1, . . .−kn+m),

where the (n+m) multiplicative factors are to amputate the external propagators. The Zj

”wavefunction renormalization” factors will be discussed without details below, and exam-

ples will be discussed and computed next quarter when you learn about renormalization

of diagrams with loops. Because the (n+m) external states are taken on shell, they have
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k2j −m2
j → 0, so these multiplicative factors are ∼ 0n+m. These factors of zero cancel with

factors of 1/0 for diagrams with n+m external propagators. Disconnected diagrams have

fewer external propagators so they are set to zero by the 0n+m multiplication. Consider

for example G̃(4)(k1, k2, k3, k4) for 4 external mesons in our meson-nucleon toy model. The

lowest order contribution is at O(g0) and is

(2π)4δ(4)(k1 + k4)
i

k21 − µ2 + iǫ
(2π)4δ(4)(k2 + k3)

i

k22 − µ2 + iǫ
+ 2 permutations.

This is the −1 that we subtract in S − 1, and indeed would not contribute to 2 → 2

scattering using the above formula, because it is set to zero by
∏4

n=1(k
2
n −m2

n) when the

external momenta are put on shell. To get a non-zero result, need a G̃(4) contribution with

4 external propagators, which we get e.g. at O(g4) with an internal nucleon loop in the toy

model with cubic interactions, or at tree-level in λφ4, where it gives iAφ4 = −iλ+O(λ2).

• Account for bare vs full interacting fields. Let |k〉 be the physical one-meson state

of the full interacting theory, normalized to 〈k′|k〉 = (2π)32ωkδ
(3)(~k′ − ~k). Then

〈k|φ(x)|Ω〉 = 〈k|eiP ·xφ(0)e−iP ·x|Ω〉 = eik·x〈k|φ(0)|Ω〉 ≡ eik·xZ
1/2
φ .

Can rescale the fields, s.t. 〈k|φR(x)|Ω〉 = e−ik·x. The LSZ formula is:

〈q1 . . . qn|S − 1|k1 . . . km〉 =
n∏

a=1

q2a −m2
a

i
√
Z

m∏

b=1

k2b −m2
b

i
√
Z

G̃(n+m)(−q1, . . .− qn, k1, . . . km),

where the Green function is for the Heisenberg fields in the full interacting vacuum.

To derive the LSZ formula, consider wave packets, with some profile F (~k), and f(x) =
∫

d3k
(2π)32ωk

F (~k)e−ik·x, where we define k0 =

√
~k2 + µ2, so f(x) solves the KG equation.

Now define (with the understanding that φ → φR is the rescaled Heisenberg picture field,

shifted if necessary to eliminate any classical vacuum expectation value, i.e. if Ω|φ|Ω = v

then shift φ → φ − v in what follows) the time-dependent and spatially independent

operator

φf (t) = i

∫
d3~x(φ(~x, t)∂0f(~x, t)− f(~x, t)∂0φ(~x, t)).

Note that, since f(x) satisfies the KG equation, can show

i

∫
d4xf(x)(∂2 + µ2)φ(x) = −

∫
dt
∂

∂t
φf (t) = −φf (t)|∞−∞ ≡ φfin − φfout.
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Show that φf (t) makes single particle wave packets from the vacuum, 〈k|φf (t)|Ω〉 =

F (~k) (note that the two terms add). Can similarly show (because of a relative mi-

nus sign), that 〈Ω|φf (t)|k〉 = 0 (instead, φf† annihilates the single particle state).

Let |n〉 be an n-particle momentum eigenstate: Pµ|n〉 = Pµ
n |n〉. Then 〈n|φf (t)|Ω〉 =

ωpn+p0
n

2ωpn
F (~pn)e

−i(ωpn−p0
n)t〈n|φ(0)|Ω〉, where ωpn

≡
√
~p2n + µ2, which has ωpn

< p0n for any

multiparticle state. So for any state 〈ψ| then limt→±∞〈ψ|φf (t)|Ω〉 = 〈ψ|f〉 + 0, where

|f〉 ≡
∫

d3k
(2π)32ωk

F (k)〈ψ|k〉 is a one-particle state and the multiparticle states contributions

sum to zero using the Riemann-Lebesgue lemma.

Make separated in states: |fn〉 =
∏
φfn(tn)|Ω〉, and out states 〈fm| = 〈Ω|

∏
(φfm)†(tm),

with tn → −∞ and tm → +∞. Then show

〈fm|S − 1|fn〉 =
∫ ∏

n

d4xnfn(xn)
∏

m

d4xmfm(xm)∗
∏

r

i(∂2r +m2
r)G(xn, xm).

Take fi(x) → e−ikixi at the end. There are 2n+m terms with different ti → ±∞. Can

show that almost all cancel and we are left only with the n in-states and the m out-states.

See the Coleman lectures for more details in the case of 2 → 2.

• Next topic: quantization via the Feynman path integral. In canonical quantization,

time plays a special role: equal time commutation relations, time ordered products, etc.

Feynman found a completely new description of QM, by intuitively thinking about double

slit interference and realizing that empty space can be thought of as being filled with

screens that are full of holes, so such interference and taking multiple paths is always

there. The path integral generalizes immediately from QM to QFT, and for different

types of fields. Unlike canonical quantization, it makes Lorentz and Poincare symmetry

manifest, and also gives a way to define QFT beyond perturbation theory. The classical

limit is clarified, as the stationary phase limit of an integral. Similar statements apply in

optics. The path integral also helps to connect QFT with statistical physics, with the path

integral analogous to the partition function.

First consider QM:

U(xb, T ; xa, 0) = 〈xb|e−iHT/h̄|xa〉 =
∫

[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it.

E.g. free particle

(−im
2πh̄ǫ

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ǫ

N∑

i=1

(xi − xi−1)
2]
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Where we take ǫ→ 0 and N → ∞, with Nǫ = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation): ∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a → a + iǫ, with ǫ > 0, and then take ǫ → 0+. We’ll see

that this is related to the iǫ that we saw in the Feynman propagator, which gave the T

ordering.

After n− 1 steps, get integral:

(
2πih̄nǫ

m

)−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)
2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions.

• Can derive the path integral from standard QM formulae, with operators, by intro-

ducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =
∫ ∫ N∏

j=1

dqj〈q′|e−iHδt|qN−1〉〈qN−1|e−iHδt|qN−2〉 . . . 〈q1|e−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2 [A,B]+..., we’re not going to have to worry about this for δt→ 0:

e−iHδt = e−iδtp2/2me−iδtV (q)eO(δt2). Now note

〈q2|e−iHδt|q1〉 =
∫
dp1〈q2|e−iδtp2/2m|p1〉〈p1|e−iV (q)δt|q1〉,

=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).
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This leads to

〈q′, t′|q, t〉 =
∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t)−H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.

• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =
∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). E.g.

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =
∫

[dφ]eiS/h̄ S =

∫
d4xL.

This is then used to compute Green’s functions:

〈Ω|T
n∏

i=1

φH(xi)|Ω〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫
[dφ] exp(iS/h̄). Again, as noted above, the T ordering will be automatic.

• Now introduce sources for the fields as a trick to get the time order products from

derivatives of a generating function (or functional).

• Consider QM with Hamiltonian H(q, p), modified by introducing a source for q,

H → H − J(t)q. (We could also add a source for p, but don’t bother doing so here.)

Consider moreover replacingH → H(1−iǫ), with ǫ→ 0+, which has the effect of projecting

on to the ground state at t→ ±∞. As mentioned, this’ll be related to the iǫ of the Feynman

propagator. Consider the vacuum-to vacuum amplitude in the presence of the source,

〈0|0〉J =

∫
[dq] exp[i

∫
dt(L+ J(t)q)/h̄] ≡ Z[J(t)].
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Once we compute Z[J(t)] we can use it to compute arbitrary time-ordered expectation

values. Indeed, Z[J ] is a generating functional1 for time ordered expectation values of

products of the q(t) operators:

〈0|
n∏

j=1

Tq(tj)|0〉 =
n∏

j=1

1

i

δ

δJ(tj)
Z[f ]

∣∣
f=0

,

where the time evolution e−iHt/h̄ is accounted for on the LHS by taking the operators

in the Heisnberg picture. We’ll be interested in such generating functionals, and their

generalization to quantum field theory (replacing t→ (t, ~x)).

• We’ll want to compute amplitudes like

〈0|
∏

i Tq(ti)|0〉J=0

〈0|0〉J=0

and for these the detA factor in the Gaussian integrals will cancel between the numerator

and the denominator. This is related to the cancellation of vacuum bubble diagrams.

• Let’s apply the above to compute the generating functional for the example of QM

harmonic oscillator (scaling m = 1),

Z[J(t)] =

∫
[dq(t)] exp(− i

h̄

∫
dt

[
1
2q(t)(

d2

dt2
+ ω2)q(t)− J(t)q(t)

]
).

This is analogous to the multi-dimenensional gaussian above, where i is replaced with the

continuous label t,
∑

i →
∫
dt etc. and the matrix Aij is replaced with the differential

operator A→ −( d2

dt2
+ω2 − iǫ), where the iǫ is to damp the gaussian, as mentioned above.

Doing the gaussian gives a factor of
√
detB which we don’t need to compute now because

it’ll cancel, and the exponent with the sources from completing the square, which is the

term we want, so

〈0|0〉J
〈0|0〉J=0

= “ exp[−i12A
−1
ij JiJj/h̄]” = exp[−1

2 h̄

∫
dtdt′J(t)G(t− t′)J(t′)],

with G(t) the Green’s function for the oscillator, (−∂2t − ω2 + iǫ)G(t) = iδ(t),

G(t) =

∫ ∞

−∞

dE

2πh̄

i e−iEt/h̄

E2/h̄2 − ω2 + iǫ
=

1

2ω
e−iω|t|. (1)

1 Recall how functional derivatives work, e.g. δ

δJ(t)
J(t′) = δ(t− t

′).
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The iǫ here does the same thing as in the Feynman propagator: the pole at E = h̄ω is

shifted below the axis and that at E = −h̄ω is shifted above. Equivalently, we can replace

E → E(1 + iǫ), to tilt the integration contour below the −ω pole and above the +ω pole.

Note then that e−iEt/h̄ → e−iEt/h̄eEtǫ/h̄, which projects on to the vacuum for t→ ∞ (the

iǫ projects on to the vacuum in the far future and also the far past).

For t > 0, the E contour is closed in the LHP and the residue is at E = h̄ω, while for

t < 0 the contour is closed in the UHP, with residue at E = −h̄ω.
• Now that we know the generating functional, we can use it to compute time ordered

expectation values via

〈0|T
n∏

i=1

φH(ti)|0〉/〈0|0〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(ti) exp(iS/h̄) = Z−1
0

n∏

i=1

h̄

i

δ

δJ(t)
|J=0.

with Z0 =
∫
[dφ] exp(iS/h̄).

• On to QFT and the Klein-Gordon theory,

Z0 =

∫
[dφ]eiS/h̄ S = 1

2

∫
d4xφ(x)(−∂2 −m2)φ(x),

where we integrated by parts and dropped a surface term. This is completely analogous

to our QM SHO example, simply replacing d2

dt2
+ ω2 − iǫ there with ∂2 +m2 − iǫ here –

again, the iǫ is to make the oscillating gaussian integral slightly damped. I.e. we should

take S = 1
2

∫
d4xφ(x)(−∂2 − m2 + iǫ)φ(x), with ǫ > 0, and then ǫ → 0+. Note that

the operator is A ∼ −∂2 − m2 + iǫ, which in momentum space is p2 − m2 + iǫ. Looks

familiar: it’s the Feynman iǫ prescription, which you understood last quarter as needed to

give correct causal structure of greens functions, here comes simply from ensuring that the

integrals converge! This is why the path integral automatically gives the time ordering of

the products. So

Z0 = const(det(−∂2 −m2 + iǫ))−1/2.

As in the SHO QM example, we can compute field theory Green’s functions via the

generating functional

Z[J(x)] =

∫
[dφ] exp(i

∫
d4x[L+ J(x)φ(x)]).

This is a functional: input function J(x) and it outputs a number. Use it to compute

〈0|T
n∏

i=1

φ(xi)|0〉/〈0|0〉 = Z[J ]−1
n∏

j=1

(
−i δ

δJ(xi)

)
Z[J ]

∣∣
J=0

.
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E.g. for the KG example, A = (−∂2 −m2 + iǫ), so the generating functional is

Zfree[J ] = Z0[J ] = exp(−1
2 h̄

−1

∫
d4xd4yJ(x)DF (x− y)J(y)), (2)

with (−∂2 −m2 + iǫ)DF (x− y) = iδ4(x− y) and DF (x− y) ≡
∫

d4k
(2π)4

ie−ik(x−y)

k2−m2+iǫ .

In general, use the generating functional Z[J ] to compute time ordered products, it

reproduces Wick’s theorem, Feynman diagrams, and thus S-matrix amplitudes (via LSZ).
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