
11/6/19 Lecture outline

⋆ Reading supplement for LSZ: Coleman lecture notes pages 140-175.

• Last time:

G(n)(x1 . . . xn) ≡ 〈Ω|TφH(x1) . . . φH(xn)|Ω〉 =
〈0|Tφ1I(x1) . . . φnI(xn)S|0〉

〈0|S|0〉 ,

G̃(n)(p1, . . . pn) =

∫ n∏

i=1

d4xie
−ipixiG(n)(x1 . . . xn).

〈kn+1 . . . kn+m|S−1|k1k2 . . . kn〉 =
n+m∏

j=1

k2j −m2
j

i
√
Zj

G̃(n+m(k1, k2, . . . , kn,−kn+1, . . .−kn+m),

where the (n+m) multiplicative factors are to amputate the external propagators. The Zj

”wavefunction renormalization” factors will be discussed without details below, and exam-

ples will be discussed and computed next quarter when you learn about renormalization

of diagrams with loops. Because the (n+m) external states are taken on shell, they have

k2j −m2
j → 0, so these multiplicative factors are ∼ 0n+m. These factors of zero cancel with

factors of 1/0 for diagrams with n+m external propagators. Disconnected diagrams have

fewer external propagators so they are set to zero by the 0n+m multiplication. Consider

for example G̃(4)(k1, k2, k3, k4) for 4 external mesons in our meson-nucleon toy model. The

lowest order contribution is at O(g0) and is

(2π)4δ(4)(k1 + k4)
i

k21 − µ2 + iǫ
(2π)4δ(4)(k2 + k3)

i

k22 − µ2 + iǫ
+ 2 permutations.

This is the −1 that we subtract in S − 1, and indeed would not contribute to 2 → 2

scattering using the above formula, because it is set to zero by
∏4

n=1(k
2
n −m2

n) when the

external momenta are put on shell. To get a non-zero result, need a G̃(4) contribution with

4 external propagators, which we get e.g. at O(g4) with an internal nucleon loop in the toy

model with cubic interactions, or at tree-level in λφ4, where it gives iAφ4 = −iλ+O(λ2).

• Account for bare vs full interacting fields. Let |k〉 be the physical one-meson state

of the full interacting theory, normalized to 〈k′|k〉 = (2π)32ωkδ
(3)(~k′ − ~k). Then

〈k|φ(x)|Ω〉 = 〈k|eiP ·xφ(0)e−iP ·x|Ω〉 = eik·x〈k|φ(0)|Ω〉 ≡ eik·xZ
1/2
φ .

Can rescale the fields, s.t. 〈k|φR(x)|Ω〉 = e−ik·x. The LSZ formula is:

〈q1 . . . qn|S − 1|k1 . . . km〉 =
n∏

a=1

q2a −m2
a

i
√
Z

m∏

b=1

k2b −m2
b

i
√
Z

G̃(n+m)(−q1, . . .− qn, k1, . . . km),
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where the Green function is for the Heisenberg fields in the full interacting vacuum.

To derive the LSZ formula, consider wave packets, with some profile F (~k), and f(x) =
∫

d3k
(2π)32ωk

F (~k)e−ik·x, where we define k0 =

√
~k2 + µ2, so f(x) solves the KG equation.

Now define (with the understanding that φ → φR is the rescaled Heisenberg picture field,

shifted if necessary to eliminate any classical vacuum expectation value, i.e. if Ω|φ|Ω = v

then shift φ → φ − v in what follows) the time-dependent and spatially independent

operator

φf (t) = i

∫
d3~x(φ(~x, t)∂0f(~x, t)− f(~x, t)∂0φ(~x, t)).

Note that, since f(x) satisfies the KG equation, can show

i

∫
d4xf(x)(∂2 + µ2)φ(x) = −

∫
dt
∂

∂t
φf (t) = −φf (t)|∞−∞ ≡ φfin − φfout.

Show that φf (t) makes single particle wave packets from the vacuum, 〈k|φf (t)|Ω〉 =

F (~k) (note that the two terms add). Can similarly show (because of a relative mi-

nus sign), that 〈Ω|φf (t)|k〉 = 0 (instead, φf† annihilates the single particle state).

Let |n〉 be an n-particle momentum eigenstate: Pµ|n〉 = Pµ
n |n〉. Then 〈n|φf (t)|Ω〉 =

ωpn+p0

n

2ωpn
F (~pn)e

−i(ωpn−p0

n)t〈n|φ(0)|Ω〉, where ωpn
≡

√
~p2n + µ2, which has ωpn

< p0n for any

multiparticle state. So for any state 〈ψ| then limt→±∞〈ψ|φf (t)|Ω〉 = 〈ψ|f〉 + 0, where

|f〉 ≡
∫

d3k
(2π)32ωk

F (k)〈ψ|k〉 is a one-particle state and the multiparticle states contributions

sum to zero using the Riemann-Lebesgue lemma.

Make separated in states: |fn〉 =
∏
φfn(tn)|Ω〉, and out states 〈fm| = 〈Ω|

∏
(φfm)†(tm),

with tn → −∞ and tm → +∞. Then show

〈fm|S − 1|fn〉 =
∫ ∏

n

d4xnfn(xn)
∏

m

d4xmfm(xm)∗
∏

r

i(∂2r +m2
r)G(xn, xm).

Take fi(x) → e−ikixi at the end. There are 2n+m terms with different ti → ±∞. Can

show that almost all cancel and we are left only with the n in-states and the m out-states.

See the Coleman lectures for more details in the case of 2 → 2.

• Next topic: quantization via the Feynman path integral. In canonical quantization,

time plays a special role: equal time commutation relations, time ordered products, etc.

Feynman found a completely new description of QM, by intuitively thinking about double

slit interference and realizing that empty space can be thought of as being filled with

screens that are full of holes, so such interference and taking multiple paths is always

there. The path integral generalizes immediately from QM to QFT, and for different
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types of fields. Unlike canonical quantization, it makes Lorentz and Poincare symmetry

manifest, and also gives a way to define QFT beyond perturbation theory. The classical

limit is clarified, as the stationary phase limit of an integral. Similar statements apply in

optics. The path integral also helps to connect QFT with statistical physics, with the path

integral analogous to the partition function.

First consider QM:

U(xb, T ; xa, 0) = 〈xb|e−iHT/h̄|xa〉 =
∫

[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it.

E.g. free particle

(−im
2πh̄ǫ

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ǫ

N∑

i=1

(xi − xi−1)
2]

Where we take ǫ→ 0 and N → ∞, with Nǫ = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation): ∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a → a + iǫ, with ǫ > 0, and then take ǫ → 0+. We’ll see

that this is related to the iǫ that we saw in the Feynman propagator, which gave the T

ordering.

After n− 1 steps, get integral:

(
2πih̄nǫ

m

)−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)
2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions.
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• Can derive the path integral from standard QM formulae, with operators, by intro-

ducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =
∫ ∫ N∏

j=1

dqj〈q′|e−iHδt|qN−1〉〈qN−1|e−iHδt|qN−2〉 . . . 〈q1|e−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2 [A,B]+..., we’re not going to have to worry about this for δt→ 0:

e−iHδt = e−iδtp2/2me−iδtV (q)eO(δt2). Now note

〈q2|e−iHδt|q1〉 =
∫
dp1〈q2|e−iδtp2/2m|p1〉〈p1|e−iV (q)δt|q1〉,

=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).

This leads to

〈q′, t′|q, t〉 =
∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t)−H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.
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