11/18/19 Lecture outline

- Continue from last time, Feynman path integral. As in the SHO QM example, we can compute field theory Green's functions via the generating functional (i.e. input a $J(x)$ and it outputs a number)

$$
Z[J(x)]=\int[d \phi] \exp \left(i \int d^{4} x[\mathcal{L}+J(x) \phi(x)]\right)
$$

Use it to compute Greens functions

$$
G^{(n)}\left(x_{1}, \ldots x_{n}\right) \equiv\langle 0| T \prod_{i=1}^{n} \phi\left(x_{i}\right)|0\rangle /\langle 0 \mid 0\rangle=\left.Z[J]^{-1} \prod_{j=1}^{n}\left(-i \frac{\delta}{\delta J\left(x_{i}\right)}\right) Z[J]\right|_{J=0} .
$$

We can write this also as

$$
Z[J]=\sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} d^{4} x_{i} J\left(x_{1}\right) \ldots J\left(x_{n}\right) G^{(n)}\left(x_{1}, \ldots x_{n}\right)
$$

where we now just remember to normalize $Z[J=0]=1$. In general, use the generating functional $Z[J]$ to compute time ordered products, it reproduces Wick's theorem, Feynman diagrams, and thus S-matrix amplitudes (via LSZ).

Used

$$
Z\left(J_{i}\right) \equiv \prod_{i=1}^{N} \int d \phi_{i} \exp \left(\frac{i}{\hbar}\left(\frac{1}{2} A_{i j} \phi_{i} \phi_{i}+J_{i} \phi_{i}\right)\right)=(2 \pi i \hbar)^{N / 2}(\operatorname{det} A)^{-1 / 2} \exp \left(-i A_{i j}^{-1} J_{i} J_{j} / 2 \hbar\right)
$$

E.g. for a free KG field, $A=\left(-\partial^{2}-m^{2}+i \epsilon\right)$, so For Klein-Gordon theory,

$$
Z_{0}=\int[d \phi] e^{i S / \hbar} \quad S=\frac{1}{2} \int d^{4} x \phi(x)\left(-\partial^{2}-m^{2}\right) \phi(x),
$$

where we integrated by parts and dropped a surface term. This is completely analogous to our QM SHO example, simply replacing $\frac{d^{2}}{d t^{2}}+\omega^{2}-i \epsilon$ there with $\partial^{2}+m^{2}-i \epsilon$ here again, the $i \epsilon$ is to make the oscillating gaussian integral slightly damped. I.e. we should take $S=\frac{1}{2} \int d^{4} x \phi(x)\left(-\partial^{2}-m^{2}+i \epsilon\right) \phi(x)$, with $\epsilon>0$, and then $\epsilon \rightarrow 0^{+}$. Note that the operator is $A \sim-\partial^{2}-m^{2}+i \epsilon$, which in momentum space is $p^{2}-m^{2}+i \epsilon$. Looks familiar: it's the Feynman $i \epsilon$ prescription, which here comes simply from ensuring that the integrals converge! This is why the path integral automatically gives the time ordering of the products. So

$$
Z_{0}=\operatorname{const}\left(\operatorname{det}\left(-\partial^{2}-\mathrm{m}^{2}+\mathrm{i} \epsilon\right)\right)^{-1 / 2}
$$

The generating functional is

$$
\begin{equation*}
Z_{\text {free }}[J]=Z_{0}[J]=\exp \left(-\frac{1}{2} \hbar^{-1} \int d^{4} x d^{4} y J(x) D_{F}(x-y) J(y)\right) \tag{1}
\end{equation*}
$$

- There is another nice combinatoric fact:

$$
i W[J] \equiv \ln Z[J]=\sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} d^{4} x_{i} J\left(x_{1}\right) \ldots J\left(x_{n}\right) G_{\text {connected }}^{(n)}\left(x_{1}, \ldots x_{n}\right)
$$

where $G_{\text {connected }}^{(n)}\left(x_{1}, \ldots x_{n}\right)$ are the connected diagram Greens functions. For example, in the free field case we have $G_{\text {connected }}(x)^{(1)}=\frac{\hbar}{i} \frac{\delta}{\delta J(x)} W[J]=\langle\phi(x)\rangle_{J}=i \int d^{4} y D_{F}(x-$ $y) J(y)$ and $G_{\text {connected }}^{(2)}\left(x_{1}, x_{2}\right)=\langle T \phi(x) \phi(y)\rangle_{J}-\langle\phi(x)\rangle_{J}\langle\phi(y)\rangle_{J}=D_{F}\left(x_{1}-x_{2}\right)$, and $G_{\text {connected }}^{(n>2)}=0$. The LSZ result has those factors of $\prod_{i=1}^{n+m}\left(p_{i}^{2}-m_{i}^{2}\right) G^{(n+m)}$ to amputate the external legs, and that sets to zero the contributions of disconnected diagrams. So it suffices to consider only $G_{\text {connected }}^{(n+m)}$, and thus $W[J]$ is useful. $Z[J]$ has a formal relation to the partition function, and then $W[J]$ is related to free energy.

- Now let's consider an interacting theory. Notice that

$$
\int[d \phi] \exp \left(\frac{i}{\hbar}\left[S_{\text {free }}+S_{i n t}[\phi]+\hbar \int d^{4} x J \phi\right]\right)=\exp \left[\frac{i}{\hbar} S_{\text {int }}\left[-i \frac{\delta}{\delta J}\right]\right) Z_{\text {free }}[J]
$$

So

$$
\begin{equation*}
Z[J]=N \exp \left[\frac{i}{\hbar} S_{\text {int }}\left[-i \frac{\delta}{\delta J}\right]\right) Z_{\text {free }}[J] \tag{2}
\end{equation*}
$$

where N is an irrelevant normalization factor (independent of J). The green's functions are then given by

$$
\begin{aligned}
G^{(n)}\left(x_{1} \ldots x_{n}\right) & =\frac{\int[d \phi] \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right) \exp \left(\frac{i}{\hbar} S_{I}[\phi]\right) \exp \left[\frac{i}{\hbar} S_{\text {free }}\right]}{\int[d \phi] \exp \left(\frac{i}{\hbar} S_{I}[\phi]\right) \exp \left[\frac{i}{\hbar} S_{\text {free }}\right]} \\
& =\left.\frac{1}{Z[J]} \prod_{j=1}^{n}\left(-i \hbar \frac{\delta}{\delta J\left(x_{j}\right)}\right) \cdot Z[J]\right|_{J=0}
\end{aligned}
$$

(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don't depend specifically on the Green's function.)

- Illustrate the above formulae, and relation to Feynman diagrams, e.g. $G^{(1)}, G^{(2)}$ and $G^{(4)}$ in $\lambda \phi^{4}$ theory. The functional integral accounts for all the Feynman diagrammer;
even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and the expanding the exponentials,

$$
G^{(n)}\left(x_{1}, \ldots x_{n}\right)=\left.\frac{1}{Z[J]} \prod_{j=1}^{n}\left(-i \frac{\delta}{\delta J\left(x_{j}\right)}\right) \sum_{N=1}^{\infty} \frac{1}{N!}\left(-i \frac{\lambda}{4!\hbar} \int d^{4} y(-i)^{4} \frac{\delta^{4}}{\delta J(y)^{4}}\right)^{N} Z_{0}[J]\right|_{J=0} .
$$

etc. Consider, for example, the 4-point function $G^{(4)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \equiv\left\langle T \phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)\right\rangle /\langle 0 \mid 0\rangle$ in $\frac{\lambda_{4}}{4!} \phi^{4}$. So take 4 -fuctional derivatives w.r.t. the source, at points $x_{1} \ldots x_{4}$, i.e. $\delta / \delta J\left(x_{1}\right) \ldots \delta / \delta J\left(x_{4}\right)$. The $\mathcal{O}\left(\lambda^{0}\right)$ term thus comes from expanding the exponent in (1) to quadratic order (4 J's), corresponding to the disconnected diagrams with two propagators. Each propagator ends on a point x_{i}. This is like the 4-point function in the SHO homework. Now consider the $\mathcal{O}(\lambda)$ contribution, coming from expanding out the interaction part of the exponent in (2) to $\mathcal{O}(\lambda)$. There are now 4 extra $\delta / \delta J(y)$, for a total of 8 , so the contributing term comes from expanding the exponent in (1) to 4 -th order, i.e. there are 4 propagators. This gives the connected term, along with several disconnected terms. Go through these terms and their combinatorics.

- Next topic: non-scalar fields (e.g. Fermions or spin 1 gauge fields).

