- Recall from last time, the Dirac Lagrangian, whose EOM is the Dirac equation

$$
S_{\text {Dirac }}=\int d^{4} x \bar{\psi}(x)(i \not \partial-m) \psi(x) \quad \rightarrow \quad \text { EOM } \quad(i \not \partial-m) \psi=0
$$

(Review the slash notation and e.g. $\partial^{2}=\partial^{2} \mathbf{1}$). Dirac wrote this down by thinking about how to make sense of the square-root of the operator appearing in the KG equation, $\sqrt{\partial_{\mu} \partial^{\mu}+m^{2}}$; indeed, $-\left(i \gamma^{\mu} \partial_{\mu}+m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right)=\partial^{2}+m^{2}$.

The plane wave solutions of the Dirac equation are

$$
\psi=u^{s}(p) e^{-i p x}, \quad \psi=v^{r}(p) e^{i p x}
$$

where

$$
(\not p-m) u^{s}(p)=0, \quad(\not p+m) v^{r}(p)=0
$$

If we wanted to solve the eigenvalue equation $\not p X=\lambda X$, we'd find four eigenvalues, and four linearly independent eigenvectors, which form a basis. Here, because $\not p^{2}=m^{2}$, we see that $\lambda= \pm m$, so there are two eigenvectors with $\lambda=m$, i.e. u^{s}, and two with $\lambda=-m$, i.e. v^{r}. Here r, s both run over 1,2 , labeling the four eigenvectors, each of which is a 4 -component vector. These form a complete, orthogonal basis, with

$$
\begin{gathered}
\bar{u}^{r}(p) u^{s}(p)=-\bar{v}^{r}(p) v^{s}(p)=2 m \delta^{r s}, \quad \bar{u}^{r} v^{s}=\bar{v}^{r} u^{s}=0 \\
\sum_{r=1}^{2} u^{r}(p) \bar{u}^{r}(p)=\gamma^{\mu} p_{\mu}+m, \quad \sum_{r=1}^{2} v^{r}(p) \bar{v}^{r}(p)=\gamma^{\mu} p_{\mu}-m
\end{gathered}
$$

We'll see how to evaluate Feynman diagrams involving fermions using just these relations. These relations are basis - independent. Explicit expressions for u^{r} and v^{s} are less useful and are also basis dependent.

For example, in the Dirac basis:

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

in the rest frame of a massive fermion, we get

$$
u^{(1)}=\left(\begin{array}{c}
\sqrt{2 m} \\
0 \\
0 \\
0
\end{array}\right), \quad u^{(2)}=\left(\begin{array}{c}
0 \\
\sqrt{2 m} \\
0 \\
0
\end{array}\right)
$$

which can be boosted to get the solution for general p^{μ}. For the massless case,

$$
u^{s}(p)=\binom{\sqrt{p \cdot \sigma} \xi^{s}}{\sqrt{p \cdot \bar{\sigma}} \xi^{s}}, \quad v^{r}(p)=\binom{\sqrt{p \cdot \sigma} \eta^{r}}{-\sqrt{p \cdot \bar{\sigma}} \eta^{r}},
$$

where $\xi^{\dagger} \xi=\eta^{\dagger} \eta=1$, and r, s label the basis choices, e.g $\xi^{1}=\binom{1}{0}$ and $\xi^{2}=\binom{0}{1}$.

- The general solution of the classical EOM is a superposition of these plane waves:

$$
\psi(x)=\sum_{r=1}^{2} \int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}}\left(b^{r}(p) u^{r}(p) e^{-i p x}+c^{r \dagger}(p) v^{r}(p) e^{i p x}\right)
$$

The theory is quantized by using $\Pi_{\psi}^{0}=\partial \mathcal{L} / \partial\left(\partial_{0} \psi\right)=i \psi^{\dagger}$ and imposing

$$
\{\psi(t, \vec{x}), \Pi(t, \vec{y})\}=i \delta(\vec{x}-\vec{y}), \quad \text { i.e. } \quad\left\{\psi(t, \vec{x}), \psi^{\dagger}(t, \vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) .
$$

Alternatively, we can quantize via a path integral; see below.
If we were to quantize with a commutator rather than anticommutator, get a Hamiltonian that is unbounded below, with c creating antiparticles with negative energy. Shows that spin $\frac{1}{2}$ must have fermionic statistics, to avoid unitarity problems. This is a special case of the general spin-statistics theorem: unitarity requires integer spin fields to be quantized as bosons (commutators) and half-integer spin to be quantized according to Fermi-Dirac statistics (anti-commutators). Leads to the Pauli exclusion principle.

So the coefficients in the plane wave expansion get quantized to be annihilation and creation operators as

$$
\left\{b^{r}(p), b^{s \dagger}\left(p^{\prime}\right)\right\}=\delta^{r s}(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right), \quad\left\{c^{r}(p), c^{s \dagger}\left(p^{\prime}\right)\right\}=\delta^{r s}(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

with all other anticommutators vanishing.

- Aside on dimensional analysis $[\psi]=3 / 2,[u]=[v]=1 / 2,[b]=[c]=-1$.
- Hamiltonian of the Dirac equation, with fermionic statistics, $\mathcal{H}=\Pi_{\psi} \dot{\psi}-\mathcal{L}=$ $\bar{\psi}\left(-i \partial_{j} \gamma^{j}+m\right) \psi$, and then $H=\int d^{3} x \mathcal{H}$ gives

$$
: H:=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}} E_{p}\left(b^{r \dagger}(p) b^{r}(p)+c^{r \dagger}(p) c^{r}(p)\right)
$$

good, $b^{r \dagger}(p)$ creates a spin $1 / 2$ particle of positive energy, and $c^{r^{\dagger}}(p)$ creates a spin $1 / 2$ particle of positive energy. The second term was re-ordered according to normal ordering the terms originally work out to have the opposite order and the opposite sign. Fermionic
statistics gives the sign above, upon normal ordering, but Bose statistics would have given the $c^{r \dagger} c^{r}$ term with a minus sign, leading to H that is unbounded below. We need Fermionic statistics for spin $1 / 2$ fields to get a healthy theory.

- Do perturbation theory as before, but account for Fermi statistics, e.g. $T\left(\psi\left(x_{1}\right) \psi\left(x_{2}\right)\right)=$ $-T\left(\psi\left(x_{2}\right) \psi\left(x_{1}\right)\right)$ and likewise for normal ordered products. Anytime Fermionic variables are exchanged, pick up a minus sign (and sometimes the additional term if the anticommutator is non-zero). Consider in particular the propagator

$$
\{\psi(x), \bar{\psi}(y)\}=\left(i \not \partial_{x}+m\right)(D(x-y)-D(y-x))
$$

The Green's function for $\left(i \not \partial_{x}-m\right)$ is the $\psi(x) \bar{\psi}(y)$ contraction (time ordered minus normal ordered as before, and it is proportional to the unit operator so we can take expectation value and then the normal ordered part vanishes)

$$
\langle 0| T(\psi(x) \bar{\psi}(y))|0\rangle=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i(\not p+m)}{p^{2}-m^{2}+i \epsilon} e^{-i p(x-y)} .
$$

Vanishes for spacelike separated points. The momentum space fermion propagator is

$$
\frac{i}{\not p-m+i \epsilon} .
$$

The contraction of $\psi(x) \bar{\psi}(y)$ is $T(\psi(x) \bar{\psi}(y))-: \psi(x) \bar{\psi}(y)$: and can be shown to be a c-number (analogous to the scalar field case). So it is the same as its vacuum expectation value, and thus is the same as $\langle 0| T(\psi(x) \bar{\psi}(y))|0\rangle$.

- Generating functional and path integral: Let $\psi(x)$ and $\bar{\psi}(x)$ be Grassmann valued (anticommuting) functions (vs operators in canonical quantization). The path integral partition function for sources $\alpha(x)$ and $\bar{\alpha}(x)$ is

$$
Z[\alpha(x), \bar{\alpha}(x)]=\mathcal{N} \int[d \psi(x)][d \bar{\psi}(x)] \exp \left(\frac{i}{\hbar} \int d^{4} x[\mathcal{L}+\bar{\alpha}(x) \psi(x)+\bar{\psi}(x) \alpha(x)]\right) .
$$

where \mathcal{N}^{-1} is the vacuum bubble normalization such that $Z[0,0]=1$. The Grassmann version of the Gaussian integral is

$$
\int d \Theta d \bar{\Theta} \exp [i(\bar{\Theta}, A \Theta)+i(\bar{\alpha}, \Theta)+i(\bar{\Theta}, \alpha)]=\operatorname{det}(i A) \exp \left(-i\left(\bar{\alpha}, A^{-1} \alpha\right)\right.
$$

Thus for the case of the free Dirac equation we get $(\psi / \hbar \rightarrow \Theta$ and $(i \not \partial-m) \hbar \rightarrow A)$

$$
Z_{D i r a c}[\alpha, \bar{\alpha}]=\exp \left(-\frac{1}{\hbar} \int d^{4} x d^{4} y \bar{\alpha}(x) S(x-y) \alpha(y)\right)
$$

where

$$
\left(i \not \partial_{x}-m\right) S(x-y)=i \delta^{4}(x-y) \quad \text { so } \quad S(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{\not p-m+i \epsilon} e^{-i p(x-y)}
$$

Then see e.g.

$$
\langle T \psi(x) \psi(y)\rangle=\left(\frac{\hbar}{i}\right)^{2} \frac{\delta}{\delta \bar{\alpha}(x)} \frac{\delta}{\delta \alpha(y)}=\hbar S(x-y)
$$

