
10/7/19 Lecture outline

⋆ Reading: Coleman lectures 2-4. Tong chapters 1-2.

• Continue from last time. The KG theory has L = 1
2
(∂φ)2 − 1

2
m2φ2. The EOM are

linear (it is a free theory), and are classically solved by plane waves having p2 = m2. Upon

quantization, the states of the theory have a conserved particle number, and the quanta

are identical scalar fields of mass m.

φ(x) =

∫

d3k

(2π)3(2ω(k))
[a(k)e−ikx + a†(k)eikx].

[a(~k), a†(~k′)] = (2π)3(2ω)δ3(~k − ~k′),

i.e. they are creation and annihilation operators (with our relativistic measure). Cre-

ate states with momenta pµ1 , . . ., p
µ
n via a†(p1) . . . a

†(pn)|0〉. Note that these behave as

identical bosons: the state is symmetric under exchanging any pair of momenta, because

[a†(p), a†(p′)] = 0.

• Write φ(x) = φ+(x)+φ−(x), with (backwards looking Heisenberg / Pauli notation)

φ+(x) ≡

∫

d3k

(2π)32ω(k)
a(k)e−ikx, φ−(x) ≡

∫

d3k

(2π)32ω(k)
a(k)†eikx

where φ± are positive / negative frequency. Historically, first attempt was to keep just φ+

and regard it as a quantum wavefunction, ψ, with probability ∼ |ψ|2. Doesn’t work.

The Hamiltonian is

H =

∫

d3x(φ̇Π− L) = 1
2

∫

d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)).

Normal order the first term. Define : AB : for operators A and B to mean that the terms

are arranged so that the annihilation operators are on the right, e.g. : φ+(x)φ−(y) :=

φ−(y)φ+(x). Good for acting on |0〉.

The vacuum |0〉 is annihilated by all a(k), and we drop the cosmological constant con-

tribution so H|0〉 = 0 (the zero-point contribution has a δ(~k = 0) which can be interpreted

as V the volume of spacetime).

Take

H ≡: H :=

∫

d3k

(2π)2(2ω)
ωa†(~k)a(~k),

~P ≡: ~P :=

∫

d3xêiT
i0 =

∫

d3k

(2π)2(2ω)
~ka†(~k)a(~k).
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We’re dropping the CC contributing term in H, as discussed last time. So Pµ|0〉 = 0 and

Pµ|p1 . . . pn〉 = p
µ
tot|p1 . . . pn〉, where |p1 . . . pn〉 =

∏

n a
†(kn)|0〉 and p

µ
tot =

∑

n p
µ
n.

• Comment on φ(xµ)’s dependence on xµ. These are operators in the Heisenberg

picture, where φ̂(xµ) = Û(xµ)φ̂(0)Û(xµ)† where we temporarily put hats to emphasize

what are operators and Û(xµ) = e−iP̂µx
µ

is the unitary time and space translation operator.

• We will compute probability amplitudes for scattering processes. E.g. cross sections

and decay lifetimes will be of the form (Observable)=|〈f |S|i〉|2 (Phase space factors).

The amplitude 〈f |S|i〉 has initial-state |i〉 obtained from creation operators acting on the

vacuum. The S-matrix elements will be computed from products of operators acting on

the vacuum. As a first example, consider the two-point field correlation function:

〈0|φ(x)φ(y)|0〉 ≡ D1(x− y) =

∫

d3k

(2π)32ω(k)
e−ik(x−y).

Note also that 2i∂x0D(x− y) is the integral that we saw in last lecture, for the probability

amplitude to find a particle having traveled with spacetime displacement (x − y)µ. For

spacelike separation, (x−y)2 = −r2, we here get D(x−y) = m
2π2r

K1(mr), with K1 a Bessel

function. Recall that the Bessel function has a simple pole when its argument vanishes,

and exponentially decays at infinity. So D(x − y) ∼ exp(−m|~x − ~y|) is non-vanishing

outside the forward light cone.

The above above correlator is not directly a physical observable, and having it not

vanish outside the light cone does not immediately imply and causality. There could be

observable effects, from interference, if a commutator of fields is non-vanishing outside of

the lightcone. Let’s show that this does not happen. Note that

[φ(x), φ(y)] = [φ+(x), φ−(y)] + [φ−(y), φ+(x)] =

=

∫

d3k

(2π)32ω(k)

∫

d3k′

(2π)32ω(k′)
[a(k), a†(k′)]e−ikx+ik′y − (x↔ y)

Note that the commutator is a c-number, not an operator:

[φ(x), φ(y)] = D1(x− y)−D1(y − x),

where D1(x−y) is as defined above. For spacelike separation, (x−y)2 = −r2, D1(x−y) =
m

2π2r
K1(mr), with K1 a Bessel function. For spacelike separation, we can map (x − y)µ

to −(x − y)µ by a Lorentz transformation, so D1(x − y) − D1(y − x) = 0. Good. The

commutator is non-vanishing for timelike separation.
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Note that [φ(x), φ(y)] = 0 for (x − y)2 < 0, wouldn’t have been true for just φ+(x),

so there would be information propagating outside the light cone. Moreover, neither |φ|2

nor |φ+|2 can be interpreted as a conserved probability – the relativistic expression E =
√

~p2 +m2 necessarily leads to particle productions. So instead we interpret φ as similar

to ~x in QM, as a hermitian operator, not a wavefunction.

• Comment (with details to follow): 〈0|φ(x)φ(y)|0〉 satisfies the equations of motion

for either field, except for a contact term when xµ = yµ. Note that 〈0| : φ(x)φ(y) : |0〉 = 0.

The physical observables of QFT actually involve time ordered correlation functions of

operators 〈Tφ(x)φ(y)〉 ≡ Θ(x0−y0)〈φ(x)φ(y)〉+Θ(y0−x0)〈φ(y)φ(x)〉. Often we will drop

the T , because we’ll just remember that it’s always implicitly there.

• Get more interesting theories by adding interactions, e.g. V (φ) = 1
2m

2φ2 + λφ4,

treat 2nd term as a perturbation. We can consider perturbative solutions in both classical

or quantum field theory. The starting point is the green’s function for the theory with a

forcing function source:

• Consider L = 1
2∂φ

2 − 1
2m

2φ2 − ρφ, where ρ is a classical source. Solve the EOM by

φ = φ0+ i
∫

d4yD(x−y)ρ(y), where φ0 is a solution of the homogeneous KG equation and

the green’s function D(x− y) satisfies

(∂2x +m2)D(x− y) = −iδ4(x− y).

By a F.T., get

D?(x− y) =

∫

?

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. There are poles at k0 = ±ωk, where

ωk ≡ +
√

~k2 +m2. There are choices about whether the k0 contour goes above or below

the poles, and that’s what the ? label indicates.

Note that e−ik·(x−y) = e−ik0(x0−y0)+... is such that, for x0 − y0 > 0, we can close the

k0 contour in the LHP, whereas for x0 − y0 < 0 we close in the UHP.

The retarded green’s function, DR(x−y), by definition vanishes for x0 < y0. We thus

get DR if the k0 contour goes above both poles: then closing the contour in the UHP gives

zero. Going above both poles gives the retarded green’s function, DR(x− y)

DR(x− y) = θ(x0 − y0)

∫

d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D1(x− y)−D1(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,
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where D1(x− y) is as defined above. This is reasonable: the ρ(y) source only affects φ(x)

in the future.

Going below both poles gives the advanced propagator, which vanishes for y0 < x0.

• Feynman propagator: go above the k0 = Ek pole and below the k0 = −Ek pole.

−Ek pole is heuristically the anti-matter, traveling backward in time.
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