10/7/19 Lecture outline
* Reading: Coleman lectures 2-4. Tong chapters 1-2.

e Continue from last time. The KG theory has £ = %(8;15)2 — %ngbQ. The EOM are
linear (it is a free theory), and are classically solved by plane waves having p> = m2. Upon
quantization, the states of the theory have a conserved particle number, and the quanta
are identical scalar fields of mass m.

3
o(z) = / m[a(me—ikuawk)eim.

[a(k), al ()] = (2m)*(2w)8° (k — &),

i.e. they are creation and annihilation operators (with our relativistic measure). Cre-
ate states with momenta p/', ..., p# via a'(p1)...a(p,)|0). Note that these behave as
identical bosons: the state is symmetric under exchanging any pair of momenta, because
[a’(p), a' (p')] = 0.
e Write ¢(z) = ¢ 1 (z) + ¢~ (z), with (backwards looking Heisenberg / Pauli notation)
d3k . d3k ,
+ _ —ikx — — T ikx
)= | ———a(k)e , )= | ———a(k)'e
@)= [ Grmama® (@)= [ Grmama®
where ¢ are positive / negative frequency. Historically, first attempt was to keep just ¢
and regard it as a quantum wavefunction, ¢, with probability ~ [¢]?. Doesn’t work.
The Hamiltonian is

H= / dPr(pll - L) = 3 / Qéﬁw(a(%)ﬁ(%) +af (k)a(k)).

Normal order the first term. Define : AB : for operators A and B to mean that the terms
are arranged so that the annihilation operators are on the right, e.g. : ¢T(2)¢~ (y) =
¢~ (y)¢T (z). Good for acting on |0).

The vacuum |0) is annihilated by all a(k), and we drop the cosmological constant con-
tribution so H|0) = 0 (the zero-point contribution has a §(k = 0) which can be interpreted
as V the volume of spacetime).

Take

3 - -
H=H :/%WGT(k)a(k)?
P=P:= /d?’:céiTlO :/%W(@a(@.
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We're dropping the CC contributing term in H, as discussed last time. So P*|0) = 0 and
PHpy...pn) = Phoylp1 - - - Pn), where [py ... py) =T, a'(k,)|0) and pl,, = 3, ph.

e Comment on ¢(x*)’s dependence on x*. These are operators in the Heisenberg
picture, where ¢(z#) = U(z")p(0)U(x*)t where we temporarily put hats to emphasize
what are operators and U (zt) = e~iPu" is the unitary time and space translation operator.

e We will compute probability amplitudes for scattering processes. E.g. cross sections
and decay lifetimes will be of the form (Observable)=|(f|S|i)|*> (Phase space factors).
The amplitude (f|S]i) has initial-state |7) obtained from creation operators acting on the
vacuum. The S-matrix elements will be computed from products of operators acting on
the vacuum. As a first example, consider the two-point field correlation function:
d3k

e~ tk(z—y)
(27)32w(k)

©016(2)6(w)|0) = Dile —y) = [
Note also that 2i0,0 D(x — y) is the integral that we saw in last lecture, for the probability
amplitude to find a particle having traveled with spacetime displacement (x — y)*. For
spacelike separation, (z—y)? = —r?, we here get D(z—y) = 525K (mr), with K a Bessel
function. Recall that the Bessel function has a simple pole when its argument vanishes,
and exponentially decays at infinity. So D(x — y) ~ exp(—m|Z — ¥]) is non-vanishing
outside the forward light cone.
The above above correlator is not directly a physical observable, and having it not
vanish outside the light cone does not immediately imply and causality. There could be

observable effects, from interference, if a commutator of fields is non-vanishing outside of

the lightcone. Let’s show that this does not happen. Note that

[6(2), o(y)] = [67 (), 6~ (Y] + [¢™ (1), 67 ()] =

d?’k dgk/ R
:/(27T>32W(]€)/(27T)32w(k/) [CL(]{?),CLTU{: )]e kx+ik —<.’13Hy)

Note that the commutator is a c-number, not an operator:

[¢(z), p(y)] = D1(x —y) — Di(y — z),

where D (z — 1) is as defined above. For spacelike separation, (x —y)? = —r2, Di(x—y) =
55— K1 (mr), with K; a Bessel function. For spacelike separation, we can map (z — y)"
to —(x — y)* by a Lorentz transformation, so Di(z —y) — D1(y — x) = 0. Good. The

commutator is non-vanishing for timelike separation.
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Note that [¢(x), ¢(y)] = 0 for (z — y)? < 0, wouldn’t have been true for just ¢*(z),
so there would be information propagating outside the light cone. Moreover, neither |¢|?
nor |¢T|? can be interpreted as a conserved probability — the relativistic expression F =
\/m necessarily leads to particle productions. So instead we interpret ¢ as similar
to & in QM, as a hermitian operator, not a wavefunction.

e Comment (with details to follow): (0|¢(x)p(y)|0) satisfies the equations of motion
for either field, except for a contact term when z# = y*. Note that (0] : ¢(z)d(y) : |0) = 0.
The physical observables of QFT actually involve time ordered correlation functions of

operators (Té(x)¢(y)) = O(2° —y°)(d(2)d(y)) + Oy’ —2°){(d(y)d(x)). Often we will drop

the T', because we’ll just remember that it’s always implicitly there.

e Get more interesting theories by adding interactions, e.g. V(¢) = %m2¢2 + Ao?,
treat 2nd term as a perturbation. We can consider perturbative solutions in both classical
or quantum field theory. The starting point is the green’s function for the theory with a
forcing function source:

e Consider £ = %6gb2 — %m2¢2 — po, where p is a classical source. Solve the EOM by
¢ = ¢go+i [d*yD(z—1y)p(y), where ¢y is a solution of the homogeneous KG equation and

the green’s function D(x — y) satisfies

(07 +m*)D(x —y) = —id* (z — y).

By a F.T., get
d*k i :
Doz — 1) = —ik(z—y)
&=y ﬁ (2m)* k2 — m2°
Consider the kg integral in the complex plane. There are poles at ky = Fwg, where

wi = +V k2 +m2. There are choices about whether the k9 contour goes above or below
the poles, and that’s what the 7 label indicates.

Note that e~ (@=v) = ¢=ik’@ =y")+ i guch that, for z° — 3% > 0, we can close the
kY contour in the LHP, whereas for 2% — y° < 0 we close in the UHP.

The retarded green’s function, Dg(x —y), by definition vanishes for xg < yo. We thus
get Dp if the ko contour goes above both poles: then closing the contour in the UHP gives
zero. Going above both poles gives the retarded green’s function, Dr(x — y)

Dr(z —y) = 0(z0 — vo) / dgik(e—ik(x—y) — ¢ikl@=v))
(27)32wy,
= 0(zo — yo)(D1(z —y) — D1y — x)) = 0(zo — yo)([(x), d(y)]),

3



where D;(x — y) is as defined above. This is reasonable: the p(y) source only affects ¢(z)
in the future.
Going below both poles gives the advanced propagator, which vanishes for yg < xg.
e Feynman propagator: go above the ky = Ej pole and below the ky = —FEj pole.

—FEy, pole is heuristically the anti-matter, traveling backward in time.



