10/7/19 Lecture outline

* Reading: Coleman lectures 2-4. Tong chapters 1-2.

- Continue from last time. The KG theory has $\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}$. The EOM are linear (it is a free theory), and are classically solved by plane waves having $p^{2}=m^{2}$. Upon quantization, the states of the theory have a conserved particle number, and the quanta are identical scalar fields of mass m.

$$
\begin{gathered}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}(2 \omega(k))}\left[a(k) e^{-i k x}+a^{\dagger}(k) e^{i k x}\right] . \\
{\left[a(\vec{k}), a^{\dagger}\left(\vec{k}^{\prime}\right)\right]=(2 \pi)^{3}(2 \omega) \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right)}
\end{gathered}
$$

i.e. they are creation and annihilation operators (with our relativistic measure). Create states with momenta $p_{1}^{\mu}, \ldots, p_{n}^{\mu}$ via $a^{\dagger}\left(p_{1}\right) \ldots a^{\dagger}\left(p_{n}\right)|0\rangle$. Note that these behave as identical bosons: the state is symmetric under exchanging any pair of momenta, because $\left[a^{\dagger}(p), a^{\dagger}\left(p^{\prime}\right)\right]=0$.

- Write $\phi(x)=\phi^{+}(x)+\phi^{-}(x)$, with (backwards looking Heisenberg / Pauli notation)

$$
\phi^{+}(x) \equiv \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega(k)} a(k) e^{-i k x}, \quad \phi^{-}(x) \equiv \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega(k)} a(k)^{\dagger} e^{i k x}
$$

where $\phi^{ \pm}$are positive / negative frequency. Historically, first attempt was to keep just ϕ_{+} and regard it as a quantum wavefunction, ψ, with probability $\sim|\psi|^{2}$. Doesn't work.

The Hamiltonian is

$$
H=\int d^{3} x(\dot{\phi} \Pi-\mathcal{L})=\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{2}(2 \omega)} \omega\left(a(\vec{k}) a^{\dagger}(\vec{k})+a^{\dagger}(\vec{k}) a(\vec{k})\right)
$$

Normal order the first term. Define : $A B$: for operators A and B to mean that the terms are arranged so that the annihilation operators are on the right, e.g. : $\phi^{+}(x) \phi^{-}(y):=$ $\phi^{-}(y) \phi^{+}(x)$. Good for acting on $|0\rangle$.

The vacuum $|0\rangle$ is annihilated by all $a(k)$, and we drop the cosmological constant contribution so $H|0\rangle=0$ (the zero-point contribution has a $\delta(\vec{k}=0)$ which can be interpreted as V the volume of spacetime).

Take

$$
\begin{gathered}
H \equiv: H:=\int \frac{d^{3} k}{(2 \pi)^{2}(2 \omega)} \omega a^{\dagger}(\vec{k}) a(\vec{k}), \\
\vec{P} \equiv: \vec{P}:=\int d^{3} x \hat{e}_{i} T^{i 0}=\int \frac{d^{3} k}{(2 \pi)^{2}(2 \omega)} \vec{k} a^{\dagger}(\vec{k}) a(\vec{k}) .
\end{gathered}
$$

We're dropping the CC contributing term in H, as discussed last time. So $P^{\mu}|0\rangle=0$ and $P^{\mu}\left|p_{1} \ldots p_{n}\right\rangle=p_{t o t}^{\mu}\left|p_{1} \ldots p_{n}\right\rangle$, where $\left|p_{1} \ldots p_{n}\right\rangle=\prod_{n} a^{\dagger}\left(k_{n}\right)|0\rangle$ and $p_{t o t}^{\mu}=\sum_{n} p_{n}^{\mu}$.

- Comment on $\phi\left(x^{\mu}\right)$'s dependence on x^{μ}. These are operators in the Heisenberg picture, where $\hat{\phi}\left(x^{\mu}\right)=\hat{\mathcal{U}}\left(x^{\mu}\right) \hat{\phi}(0) \hat{\mathcal{U}}\left(x^{\mu}\right)^{\dagger}$ where we temporarily put hats to emphasize what are operators and $\hat{\mathcal{U}}\left(x^{\mu}\right)=e^{-i \hat{P}_{\mu} x^{\mu}}$ is the unitary time and space translation operator.
- We will compute probability amplitudes for scattering processes. E.g. cross sections and decay lifetimes will be of the form (Observable) $=|\langle f| S| i\rangle\left.\right|^{2}$ (Phase space factors). The amplitude $\langle f| S|i\rangle$ has initial-state $|i\rangle$ obtained from creation operators acting on the vacuum. The S -matrix elements will be computed from products of operators acting on the vacuum. As a first example, consider the two-point field correlation function:

$$
\langle 0| \phi(x) \phi(y)|0\rangle \equiv D_{1}(x-y)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega(k)} e^{-i k(x-y)}
$$

Note also that $2 i \partial_{x^{0}} D(x-y)$ is the integral that we saw in last lecture, for the probability amplitude to find a particle having traveled with spacetime displacement $(x-y)^{\mu}$. For spacelike separation, $(x-y)^{2}=-r^{2}$, we here get $D(x-y)=\frac{m}{2 \pi^{2} r} K_{1}(m r)$, with K_{1} a Bessel function. Recall that the Bessel function has a simple pole when its argument vanishes, and exponentially decays at infinity. So $D(x-y) \sim \exp (-m|\vec{x}-\vec{y}|)$ is non-vanishing outside the forward light cone.

The above above correlator is not directly a physical observable, and having it not vanish outside the light cone does not immediately imply and causality. There could be observable effects, from interference, if a commutator of fields is non-vanishing outside of the lightcone. Let's show that this does not happen. Note that

$$
\begin{gathered}
{[\phi(x), \phi(y)]=\left[\phi^{+}(x), \phi^{-}(y)\right]+\left[\phi^{-}(y), \phi^{+}(x)\right]=} \\
=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega(k)} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 \omega\left(k^{\prime}\right)}\left[a(k), a^{\dagger}\left(k^{\prime}\right)\right] e^{-i k x+i k^{\prime} y}-(x \leftrightarrow y)
\end{gathered}
$$

Note that the commutator is a c-number, not an operator:

$$
[\phi(x), \phi(y)]=D_{1}(x-y)-D_{1}(y-x),
$$

where $D_{1}(x-y)$ is as defined above. For spacelike separation, $(x-y)^{2}=-r^{2}, D_{1}(x-y)=$ $\frac{m}{2 \pi^{2} r} K_{1}(m r)$, with K_{1} a Bessel function. For spacelike separation, we can map $(x-y)^{\mu}$ to $-(x-y)^{\mu}$ by a Lorentz transformation, so $D_{1}(x-y)-D_{1}(y-x)=0$. Good. The commutator is non-vanishing for timelike separation.

Note that $[\phi(x), \phi(y)]=0$ for $(x-y)^{2}<0$, wouldn't have been true for just $\phi^{+}(x)$, so there would be information propagating outside the light cone. Moreover, neither $|\phi|^{2}$ nor $\left|\phi^{+}\right|^{2}$ can be interpreted as a conserved probability - the relativistic expression $E=$ $\sqrt{\vec{p}^{2}+m^{2}}$ necessarily leads to particle productions. So instead we interpret ϕ as similar to \vec{x} in QM, as a hermitian operator, not a wavefunction.

- Comment (with details to follow): $\langle 0| \phi(x) \phi(y)|0\rangle$ satisfies the equations of motion for either field, except for a contact term when $x^{\mu}=y^{\mu}$. Note that $\langle 0|: \phi(x) \phi(y):|0\rangle=0$. The physical observables of QFT actually involve time ordered correlation functions of operators $\langle T \phi(x) \phi(y)\rangle \equiv \Theta\left(x^{0}-y^{0}\right)\langle\phi(x) \phi(y)\rangle+\Theta\left(y^{0}-x^{0}\right)\langle\phi(y) \phi(x)\rangle$. Often we will drop the T, because we'll just remember that it's always implicitly there.
- Get more interesting theories by adding interactions, e.g. $V(\phi)=\frac{1}{2} m^{2} \phi^{2}+\lambda \phi^{4}$, treat 2 nd term as a perturbation. We can consider perturbative solutions in both classical or quantum field theory. The starting point is the green's function for the theory with a forcing function source:
- Consider $\mathcal{L}=\frac{1}{2} \partial \phi^{2}-\frac{1}{2} m^{2} \phi^{2}-\rho \phi$, where ρ is a classical source. Solve the EOM by $\phi=\phi_{0}+i \int d^{4} y D(x-y) \rho(y)$, where ϕ_{0} is a solution of the homogeneous KG equation and the green's function $D(x-y)$ satisfies

$$
\left(\partial_{x}^{2}+m^{2}\right) D(x-y)=-i \delta^{4}(x-y)
$$

By a F.T., get

$$
D_{?}(x-y)=\int_{?} \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}} e^{-i k(x-y)}
$$

Consider the k_{0} integral in the complex plane. There are poles at $k_{0}= \pm \omega_{k}$, where $\omega_{k} \equiv+\sqrt{\vec{k}^{2}+m^{2}}$. There are choices about whether the k^{0} contour goes above or below the poles, and that's what the ? label indicates.

Note that $e^{-i k \cdot(x-y)}=e^{-i k^{0}\left(x^{0}-y^{0}\right)+\ldots}$ is such that, for $x^{0}-y^{0}>0$, we can close the k^{0} contour in the LHP, whereas for $x^{0}-y^{0}<0$ we close in the UHP.

The retarded green's function, $D_{R}(x-y)$, by definition vanishes for $x_{0}<y_{0}$. We thus get D_{R} if the k_{0} contour goes above both poles: then closing the contour in the UHP gives zero. Going above both poles gives the retarded green's function, $D_{R}(x-y)$

$$
\begin{aligned}
D_{R}(x-y) & =\theta\left(x_{0}-y_{0}\right) \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}\left(e^{-i k(x-y)}-e^{i k(x-y)}\right) \\
& \equiv \theta\left(x_{0}-y_{0}\right)\left(D_{1}(x-y)-D_{1}(y-x)\right)=\theta\left(x_{0}-y_{0}\right)\langle[\phi(x), \phi(y)]\rangle
\end{aligned}
$$

where $D_{1}(x-y)$ is as defined above. This is reasonable: the $\rho(y)$ source only affects $\phi(x)$ in the future.

Going below both poles gives the advanced propagator, which vanishes for $y_{0}<x_{0}$.

- Feynman propagator: go above the $k_{0}=E_{k}$ pole and below the $k_{0}=-E_{k}$ pole. $-E_{k}$ pole is heuristically the anti-matter, traveling backward in time.

