
10/9/19 Lecture outline

• Continue from last time. L = 1
2∂φ

2 − 1
2m

2φ2 − ρφ, where ρ is a classical source.

Solve by φ = φ0 + i
∫

d4yD(x − y)ρ(y), where φ0 is a solution of the homogeneous KG

equation and the green’s function D(x− y) satisfies

(∂2
x +m2)D(x− y) = −iδ4(x− y).

By a F.T., get

D?(x− y) =

∫

?

d4k

(2π)4
i

k2 −m2
e−ik(x−y).

Consider the k0 integral in the complex plane. The integration contour is not yet defined

because it goes through poles at k0 = ±ωk, where ωk ≡ +
√

~k2 +m2. We must deform the

contour to avoid the poles. There are choices about whether the contour goes above or

below the poles, and that’s what the ? label indicates. Note that e−ik(x−y) ∼ e−ik0(x0−y0)

will converge for imaginary k0 if Im(k0(x0 − y0)) < 0, so for x0 > y0 we close the contour

in the LHP and for x0 < y0 we close in the UHP. The integrand is analytic modulo the

simple poles, so the k0 integral is easily evaluated by Cauchy’s theorem, with contributions

coming from whichever of the two poles are inside the closed integration contour.

Going above both poles gives the retarded green’s function, DR(x−y) which vanishes

for x0 < y0. Considering x0 > y0, get that

DR(x− y) = θ(x0 − y0)

∫

d3k

(2π)32ωk

(e−ik(x−y) − eik(x−y))

≡ θ(x0 − y0)(D1(x− y)−D1(y − x)) = θ(x0 − y0)〈[φ(x), φ(y)]〉,

where D1(x− y) is as defined in the previous lecture

〈0|φ(x)φ(y)|0〉 ≡ D1(x− y) =

∫

d3k

(2π)32ω(k)
e−ik(x−y).

This is what one usually does when solving wave equations with a source: the ρ(y) source

only affects φ(x) in the future. But still there is something weird about it, because the

k0 = −
√

~k2 +m2 pole is contributing and that has negative energy. If the k0 integration

contour instead goes below both poles, this gives the advanced propagator, which vanishes

for y0 < x0.
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Feynman propagator: go above the k0 = Ek pole and below the k0 = −Ek pole. −Ek

pole is heuristically the anti-matter, traveling backward in time. Show that this gives the

time ordering discussed in the previous lecture:

DF (x− y) ≡ 〈Tφ(x)φ(y)〉 =

{

〈φ(x)φ(y)〉 if x0 > y0
〈φ(y)φ(x)〉 if y0 > x0

.

Here T means to time order: order operators so that earliest is on the right, to latest on

left. Object like 〈Tφ(x1) . . . φ(xn)〉 will play a central role in this class. Time ordering

convention can be understood by considering time evolution in 〈tf |ti〉. Evaluate DF (x−y)

by going to momentum space:

DF (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y),

where ǫ → 0+ enforces that we go below the −ωk pole and above the +ωk pole, i.e. we

get D(x − y) if x0 > y0, and D(y − x) if x0 < y0, as desired from the definition of time

ordering. We’ll see that this ensures causality.

• The pole placement is such that the contour can be rotated to be along the imaginary

k0 axis, running from −i∞ to +i∞. This will later tie in with a useful way to treat QFT,

by going to Euclidean space via imaginary time. It is something of a technical trick, but

there is also something deep about it. Analyticity properties of amplitudes are deeply

connected with causality.

• Define contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :. This

is a number, not an operator. Let e.g. φ(x) = φ+(x) + φ−(x), where φ+ is the term with

annihilation operators and φ− is the one with creation operators (using Heisenberg and

Pauli’s reversed-looking notation). Then for x0 > y0 the contraction is [A+, B−], and for

y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).

• Wick’s theorem (we’ll soon see it’s useful, since S-matrix elements will involve T

ordered correlation functions):

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

=: e
1
2

∑

n

i,j=1
C(φiφj)

∂
∂φi

∂
∂φj φ1 . . . φn

:

(where C is the contraction symbol) to get rid of the time ordered products.
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Prove Wick’s theorem by iteration: define the RHS as W (φ1 . . . φn) and we assume

T (φ2 . . . φn) = W (φ2 . . . φn) and want to prove then that T (φ1 . . . φn) = W (φ1 . . . φn).

WLOG, take t1 > t2 . . . tn so T (φ1 . . . φn) = φ1T (φ2 . . . φn) = φ1W (φ2 . . . φn) = φ−

1 W +

Wφ+
1 + [φ+

1 ,W ]. The first two terms are normal ordered and give all contractions not

involving φ1, while the last gives all normal ordered contractions involving φ1.

So note that

〈T (φ1 . . . φn)〉

{

0 for n odd
∑

fullycontracted for n even.
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