- Last time: Define contraction of two fields $A(x)$ and $B(y)$ by $T(A(x) B(y))-$: $A(x) B(y):$: This is a number, not an operator. Let e.g. $\phi(x)=\phi^{+}(x)+\phi^{-}(x)$, where ϕ^{+} is the term with annihilation operators and ϕ^{-}is the one with creation operators (using Heisenberg and Pauli's reversed-looking notation). Then for $x^{0}>y^{0}$ the contraction is $\left[A^{+}, B^{-}\right]$, and for $y^{0}>x^{0}$ it is $\left[B^{+}, A^{-}\right]$. So can put between vacuum states to get that the contraction is $\langle T A(x) B(y)\rangle$. For example, in the KG theory the contraction of $\phi(x)$ and $\phi(y)$ is $D_{F}(x-y)$.

Wick's theorem (we'll soon see it's useful, since S-matrix elements will involve T ordered correlation functions):

$$
\begin{aligned}
T\left(\phi_{1} \ldots \phi_{n}\right) & =: \phi_{1} \ldots \phi_{n}:+\sum_{\text {contractions }}: \phi_{1} \ldots \phi_{n}: \\
& =: e^{\frac{1}{2} \sum_{i, j=1}^{n} C\left(\phi_{i} \phi_{j}\right) \frac{\partial}{\partial \phi_{i}} \frac{\partial}{\partial \phi_{j}}} \phi_{1} \ldots \phi_{n}
\end{aligned}
$$

(where C is the contraction symbol) to get rid of the time ordered products.
Prove Wick's theorem by iteration: define the RHS as $W\left(\phi_{1} \ldots \phi_{n}\right)$ and we assume $T\left(\phi_{2} \ldots \phi_{n}\right)=W\left(\phi_{2} \ldots \phi_{n}\right)$ and want to prove then that $T\left(\phi_{1} \ldots \phi_{n}\right)=W\left(\phi_{1} \ldots \phi_{n}\right)$. WLOG, take $t_{1}>t_{2} \ldots t_{n}$ so $T\left(\phi_{1} \ldots \phi_{n}\right)=\phi_{1} T\left(\phi_{2} \ldots \phi_{n}\right)=\phi_{1} W\left(\phi_{2} \ldots \phi_{n}\right)=\phi_{1}^{-} W+$ $W \phi_{1}^{+}+\left[\phi_{1}^{+}, W\right]$. The first two terms are normal ordered and give all contractions not involving ϕ_{1}, while the last gives all normal ordered contractions involving ϕ_{1}.

So note that

$$
\left\langle T\left(\phi_{1} \ldots \phi_{n}\right)\right\rangle \begin{cases}0 & \text { for } n \text { odd } \\ \sum_{\text {fullycontracted }} & \text { for } n \text { even } .\end{cases}
$$

- Simple examples of interacting theory:

$$
\mathcal{L}=\frac{1}{2}\left(\partial \phi^{2}-\mu^{2} \phi^{2}\right)-\rho(x) \phi
$$

with $\rho(x)$ an external source forcing function. We'll show this theory is exactly solvable and gives probability for particle creation given by the Poisson distribution.

Next example:

$$
\mathcal{L}=\frac{1}{2}\left(\partial \phi^{2}-\mu^{2} \phi^{2}\right)+\left(\partial \psi^{\dagger} \partial \psi-m^{2} \psi^{\dagger} \psi\right)-g \phi \psi \psi^{\dagger} .
$$

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.

- In QM we can use the S-picture, $i \hbar \frac{d}{d t}|\psi(t)\rangle_{S}=H|\psi\rangle_{S}$, or the H-picture, where t is in the operators $i \hbar \frac{d}{d t} \mathcal{O}_{\mathcal{H}}(t)=\left[\mathcal{O}_{H}, H\right]$.

In interacting theories, it is useful to use the hybrid, interaction picture. Write $H=$ $H_{0}+H_{\text {int }}$. We use H_{0} to time evolve the operators, and $H_{i n t}$ to time evolve the states:

$$
\begin{gathered}
i \frac{d}{d t} \mathcal{O}_{I}(t)=\left[\mathcal{O}_{I}, H_{0}\right], \quad i \frac{d}{d t}|\psi(t)\rangle_{I}=H_{i n t}|\psi(t)\rangle_{I} \\
|\psi(t)\rangle_{I}=e^{i H_{0}\left(q_{S}, p_{S}\right) t}|\psi(t)\rangle_{S}, \quad \mathcal{O}_{I}=e^{i H_{0} t} \mathcal{O}_{S} e^{-i H_{0} t}
\end{gathered}
$$

For example, we'll take H_{0} to be the free Hamilton of KG fields, with only the mass terms included in the potential. Again, this is free because the EOM are linear, and we can solve for $\phi(x)$ by superposition. $H_{I}(t)$ is built from these free fields

$$
\phi(\vec{x}, t)=e^{i H_{0} t} \phi_{S}(\vec{x}) e^{-i H_{0} t} .
$$

As before, upon quantization, the fields become superpositions of creation and annihilation operators. The states are all the various multiparticle states, coming from acting with the creation operators on the vacuum. Time evolution is via the interaction picture operator that satisfies

$$
i \frac{d}{d t} U_{I}\left(t, t^{\prime}\right)=H_{I}(t) U_{I}\left(t, t^{\prime}\right)
$$

- Compute probabilities from squaring amplitudes, and amplitudes from $\langle f(t=$ $+\infty)|i(t=-\infty)\rangle=\langle f| S|i\rangle=\langle f| U(\infty,-\infty)|i\rangle$. Naively, $U\left(t_{f}, t_{i}\right)=\exp \left(-\frac{i}{\hbar} \int_{t_{i}}^{t_{f}} H_{\text {int }}(t) d t\right)$, but have to be careful about $H_{\text {int }}$ not commuting at different times. Get time ordering.
- Dirac's / Dyson's formula:

$$
U_{I}\left(t, t^{\prime}\right)=T e^{-i \int_{t^{\prime}}^{t} d t^{\prime \prime} H_{I}\left(t^{\prime \prime}\right)}
$$

Argue for it by iterating time intervals. To compute scattering S-matrices, a way to think about it (to be improved shortly) is to consider asymptotic in and out states, with the interaction turned off. Time evolve, with the interaction smoothly turned on and off in the middle (see Coleman notes for more details).

$$
|\psi(t)\rangle=T e^{-i \int d^{4} x \mathcal{H}_{I}}|i\rangle .
$$

Derive it by solving $i \frac{d}{d t}|\psi(t)\rangle=H_{I}(t)|\psi(t)\rangle$ iteratively:

$$
\begin{aligned}
|\psi(t)\rangle & =|i\rangle+(-i) \int_{-\infty}^{t} d t_{1} H_{I}\left(t_{1}\right)\left|\psi\left(t_{1}\right)\right\rangle \\
\left|\psi\left(t_{1}\right)\right\rangle & =|i\rangle+(-i) \int_{-\infty}^{t_{1}} d t_{2} H_{I}\left(t_{2}\right)\left|\psi\left(t_{2}\right)\right\rangle
\end{aligned}
$$

etc where $t_{1}>t_{2}$, and then symmetrize in t_{1} and t_{2} etc., which is what the T time ordering does. Illustrate it for 2 nd term $(-i)^{2} / 2!\int_{t^{\prime}}^{t} d t_{1} \int_{t^{\prime}}^{t} d t_{2} T\left(H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)\right.$, get twice the integral over the $t_{1}>t_{2}$ region instead of the integral over the square.

