- Last time: amplitudes in toy model of real mesons ϕ of mass μ and complex nucleons of mass m, with $H_{\text {int }}=-g \phi \bar{\psi} \psi$. Aside, quantize the nucleons as usual gives $\left[\psi(\vec{x}, t), \dot{\psi}^{\dagger}(\vec{y}, t)\right]=i \delta^{3}(\vec{x}-\vec{y})$. Consider $N+N \rightarrow N+N$, to $\mathcal{O}\left(g^{2}\right)$. The initial and final states are

$$
|i\rangle=b^{\dagger}\left(p_{1}\right) b^{\dagger}\left(p_{2}\right)|0\rangle, \quad\langle f|=\langle 0| b\left(p_{1}^{\prime}\right) b\left(p_{2}^{\prime}\right)
$$

The term that contributes to scattering at $\mathcal{O}\left(g^{2}\right)$ is (don't forget the time ordering!)

$$
T \frac{(-i g)^{2}}{2!} \int d^{4} x_{1} d^{4} x_{2} \phi\left(x_{1}\right) \psi^{\dagger}\left(x_{1}\right) \psi\left(x_{1}\right) \phi\left(x_{2}\right) \psi^{\dagger}\left(x_{2}\right) \psi\left(x_{2}\right)
$$

The term that contributes to $S-1$ thus involves

$$
\begin{gathered}
\left\langle p_{1}^{\prime} p_{2}^{\prime}\right|: \psi^{\dagger}\left(x_{1}\right) \psi\left(x_{1}\right) \psi^{\dagger}\left(x_{2}\right) \psi\left(x_{2}\right):\left|p_{1} p_{2}\right\rangle=\left\langle p_{1}^{\prime} p_{2}^{\prime}\right|: \psi^{\dagger}\left(x_{1}\right) \psi^{\dagger}\left(x_{2}\right)|0\rangle\langle 0| \psi\left(x_{1}\right) \psi\left(x_{2}\right)\left|p_{1}, p_{2}\right\rangle \\
=\left(e^{i\left(p_{1}^{\prime} x_{1}+p_{2}^{\prime} x_{2}\right)}+e^{i\left(p_{1}^{\prime} x_{2}+p_{2}^{\prime} x_{1}\right)}\right)\left(e^{-i\left(p_{1} x_{1}+p_{2} x_{2}\right)}+e^{-i\left(p_{1} x_{2}+p_{2} x_{1}\right)}\right)
\end{gathered}
$$

The amplitude involves this times $D_{F}\left(x_{1}-x_{2}\right)$ (from the contraction), with the prefactor and integrals as above. The final result is

$$
i(-i g)^{2}\left[\frac{1}{\left(p_{1}-p_{1}^{\prime}\right)^{2}-\mu^{2}+i \epsilon}+\frac{1}{\left(p_{1}-p_{2}^{\prime}\right)^{2}-\mu^{2}+i \epsilon}\right](2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)
$$

Explicitly, in the CM frame, $p_{1}=\left(\sqrt{p^{2}+m^{2}}, p \widehat{e}\right)$ and $p_{2}=\left(\sqrt{p^{2}+m^{2}},-p \widehat{e}\right), p_{1}^{\prime}=$ $\left(\sqrt{p^{2}+m^{2}}, p \widehat{e}^{\prime}\right), p_{2}^{\prime}=\left(\sqrt{p^{2}+m^{2}},-p \widehat{e}^{\prime}\right)$, where $\widehat{e} \cdot \widehat{e}^{\prime}=\cos \theta$, and get

$$
\mathcal{A}=g^{2}\left(\frac{1}{2 p^{2}(1-\cos \theta)+\mu^{2}}+\frac{1}{2 p^{2}(1+\cos \theta)+\mu^{2}}\right)
$$

According to the above, $[\mathcal{A}(2 \rightarrow 2)]=0$ and the above is consistent with that. Good.
Note also that the amplitude is symmetric if we exchange $p_{1}^{\mu} \leftrightarrow p_{2}^{\mu}$ and likewise for the outgoing states. This fits with the fact that the N states are identical bosons, which follows from the fact that $[\psi(t, \vec{x}), \psi(t, \vec{y})]=0$. As we'll discuss later, identical fermions instead have $\{\psi(t, \vec{x}), \psi(t, \vec{y})\}=0$.

- Mandelstam variables for $p_{1}+p_{2} \rightarrow p_{1}^{\prime}+p_{2}^{\prime}$ scattering: $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{1}^{\prime}\right)^{2}$, $u=\left(p_{1}-p_{2}^{\prime}\right)^{2}$, with $s+t+u=m_{1}^{2}+m_{2}^{2}+m_{1^{\prime}}^{2}+m_{2^{\prime}}^{2}$. In CM, $s=4 E^{2}, t=-2 p^{2}(1-\cos \theta)$, and $u=-2 p^{2}(1+\cos \theta)$.
- Recall how we got the above answer. We $\operatorname{expand} \exp \left(-i g \int d^{4} x \mathcal{H}\right)$ and compute the time ordered expectation values using Wick's theorems, with the contractions giving factors of $D_{F}\left(x_{1}-x_{2}\right)$. Doing this, we get a $\int d^{4} x$ for each factor of $-i g$ and a $d^{4} k$ for each internal contraction. Draw a picture in position space. Let E be the number of external lines, i.e. the number of incoming + outgoing particles. (We saw last time that $[\mathcal{A}]=4-E$.) It is easier to think about everything in momentum space. Then the $\int d^{4} x$ for each vertex gives a $(2 \pi)^{4} \delta^{4}\left(p_{\text {total, in }}\right)$.
- Feynman rules! Each vertex gets $(-i g)(2 \pi)^{4} \delta^{4}\left(p_{\text {total in }}\right)$, each internal line gets $\int \frac{d^{4} k}{(2 \pi)^{4}} D_{F}\left(k^{2}\right)$, where D_{F} is the propagator, e.g. $D_{F}\left(k^{2}\right)=\frac{i}{k^{2}-m^{2}+i \epsilon}$. Result is $\langle f|(S-$ 1) $|i\rangle$, so divide by $(2 \pi)^{4} \delta^{4}\left(p_{F}-p_{I}\right)$ to get $i \mathcal{A}_{f i}$.

If the diagram has no loops, the momentum conserving delta functions fix all internal momenta in terms of the external ones. When the diagram has $L \neq 0$ loops, the procedure above yields integrals over the internal momenta of the loops. (Note that if a diagram has I internal lines and V vertices, then there are I momentum integrals, and V momentum conserving delta functions; one of these becomes overall momentum conservation, so there are $L=I-(V-1)$ momentum integrals left to do, and L is the number of loops in the diagram.) Any loop momentum integrals require renormalization, which we'll discuss later (next quarter), so for now we'll just consider "tree-level" contributions, associated with diagrams without loops, $L=0$.

- Scattering by ϕ exchange leads to an attractive Yukawa potential. This was Yukawa's original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g. the above $N+N$ scattering amplitude gives, upon using $\left(p_{1}-p_{1}^{\prime}\right)^{2}-\mu^{2}=-\left(\left|\vec{p}_{1}-\vec{p}_{1}^{\prime}\right|^{2}+\right.$ μ^{2}), and the Born approximation ${ }^{1}$ in NRQM, $\mathcal{A}_{N R}=\int d^{3} \vec{r} e^{-i\left(\vec{p}^{\prime}-\vec{p} \cdot \vec{r}\right.} V(\vec{r})$, the attractive Yukawa potential

$$
V(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{-(g / 2 m)^{2} e^{i \vec{q} \cdot \vec{r}}}{|\vec{q}|^{2}+\mu^{2}}=-\frac{(g / 2 m)^{2}}{4 \pi r} e^{-\mu r}
$$

(The $1 /(2 m)^{2}$ is because we normalized the relativistic states with the extra factor of $2 E \approx 2 m$ as compared with standard nonrelativistic normalization ${ }^{2}$. This gives Yukawa's explanation of the attraction between nucleons, from meson exchange. The u-channel term is an exchange potential interaction, which exchanges the positions of the two identical particles in addition to giving a potential. For angular momentum ℓ in a partial-wave expansion, the exchange term differs from the direct one by a factor of $(-1)^{\ell}$.

[^0]
[^0]: 1 Max Born, in QM, or Lord Rayleigh classically: $\frac{d \sigma}{d \Omega} \sim|U(\vec{q})|^{2}$
 2 This is clear on dimensional grounds, since $[g] \sim m$. More generally, write $a(p)=\sqrt{2 E} \widehat{a}(p)$ and $\mathcal{A}=\prod_{i} \sqrt{2 E_{i}} \prod_{f} \sqrt{2 E_{f}} \widehat{\mathcal{A}}$.

