
10/23/19 Lecture outline

• Last time: amplitudes in toy model of real mesons φ of mass µ and complex nu-

cleons of mass m, with Hint = −gφψ̄ψ. Aside, quantize the nucleons as usual gives

[ψ(~x, t), ψ̇†(~y, t)] = iδ3(~x− ~y). Consider N +N → N +N , to O(g2). The initial and final

states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p

′
2).

The term that contributes to scattering at O(g2) is (don’t forget the time ordering!)

T
(−ig)2

2!

∫
d4x1d

4x2φ(x1)ψ
†(x1)ψ(x1)φ(x2)ψ

†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p
′
2| : ψ

†(x1)ψ(x1)ψ
†(x2)ψ(x2) : |p1p2〉 = 〈p′1p

′
2| : ψ

†(x1)ψ
†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(
ei(p

′

1
x1+p′

2
x2) + ei(p

′

1
x2+p′

2
x1)

)(
e−i(p1x1+p2x2) + e−i(p1x2+p2x1)

)
.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2 + iǫ

+
1

(p1 − p′2)
2 − µ2 + iǫ

]
(2π)4δ(4)(p1 + p2 − p′1 − p′2).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, pê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2
(

1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

According to the above, [A(2 → 2)] = 0 and the above is consistent with that. Good.

Note also that the amplitude is symmetric if we exchange pµ1 ↔ pµ2 and likewise for

the outgoing states. This fits with the fact that the N states are identical bosons, which

follows from the fact that [ψ(t, ~x), ψ(t, ~y)] = 0. As we’ll discuss later, identical fermions

instead have {ψ(t, ~x), ψ(t, ~y)} = 0.

• Mandelstam variables for p1+p2 → p′1+p
′
2 scattering: s = (p1+p2)

2, t = (p1−p
′
1)

2,

u = (p1−p
′
2)

2, with s+t+u = m2
1+m

2
2+m

2
1′ +m2

2′ . In CM, s = 4E2, t = −2p2(1−cos θ),

and u = −2p2(1 + cos θ).
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• Recall how we got the above answer. We expand exp(−ig
∫
d4xH) and compute

the time ordered expectation values using Wick’s theorems, with the contractions giving

factors of DF (x1 − x2). Doing this, we get a
∫
d4x for each factor of −ig and a d4k for

each internal contraction. Draw a picture in position space. Let E be the number of

external lines, i.e. the number of incoming + outgoing particles. (We saw last time that

[A] = 4− E.) It is easier to think about everything in momentum space. Then the
∫
d4x

for each vertex gives a (2π)4δ4(ptotal, in).

• Feynman rules! Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal line gets∫
d4k
(2π)4DF (k

2), where DF is the propagator, e.g. DF (k
2) = i

k2−m2+iǫ
. Result is 〈f |(S −

1)|i〉, so divide by (2π)4δ4(pF − pI) to get iAfi.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L 6= 0 loops, the procedure

above yields integrals over the internal momenta of the loops. (Note that if a diagram has

I internal lines and V vertices, then there are I momentum integrals, and V momentum

conserving delta functions; one of these becomes overall momentum conservation, so there

are L = I − (V − 1) momentum integrals left to do, and L is the number of loops in the

diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later

(next quarter), so for now we’ll just consider “tree-level” contributions, associated with

diagrams without loops, L = 0.

• Scattering by φ exchange leads to an attractive Yukawa potential. This was Yukawa’s

original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g.

the above N +N scattering amplitude gives, upon using (p1 − p′1)
2 − µ2 = −(|~p1 − ~p′1|

2 +

µ2), and the Born approximation1 in NRQM, ANR =
∫
d3~re−i(~p′−~p)·~rV (~r), the attractive

Yukawa potential

V (r) =

∫
d3q

(2π)3
−(g/2m)2ei~q·~r

|~q|2 + µ2
= −

(g/2m)2

4πr
e−µr.

(The 1/(2m)2 is because we normalized the relativistic states with the extra factor of

2E ≈ 2m as compared with standard nonrelativistic normalization2. This gives Yukawa’s

explanation of the attraction between nucleons, from meson exchange. The u-channel term

is an exchange potential interaction, which exchanges the positions of the two identical

particles in addition to giving a potential. For angular momentum ℓ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (−1)ℓ.

1 Max Born, in QM, or Lord Rayleigh classically: dσ
dΩ

∼ |U(~q)|2
2 This is clear on dimensional grounds, since [g] ∼ m. More generally, write a(p) =

√
2Eâ(p)

and A =
∏

i

√
2Ei

∏
f

√
2Ef Â.
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