- Last time: amplitudes in toy model of real mesons ϕ of mass μ and complex nucleons of mass m, with $H_{i n t}=-g \phi \bar{\psi} \psi$. Get
$\mathcal{A}_{N N \rightarrow N N}=(-i g)^{2}\left[\frac{1}{\left(p_{1}-p_{1}^{\prime}\right)^{2}-\mu^{2}+i \epsilon}+\frac{1}{\left(p_{1}-p_{2}^{\prime}\right)^{2}-\mu^{2}+i \epsilon}\right](2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)+\mathcal{O}\left(g^{4}\right)$.
Explicitly, in the CM frame, $p_{1}=\left(\sqrt{p^{2}+m^{2}}, p \widehat{e}\right)$ and $p_{2}=\left(\sqrt{p^{2}+m^{2}},-p \widehat{e}\right), p_{1}^{\prime}=$ $\left(\sqrt{p^{2}+m^{2}}, p \widehat{e}^{\prime}\right), p_{2}^{\prime}=\left(\sqrt{p^{2}+m^{2}},-p \widehat{e}^{\prime}\right)$, where $\widehat{e} \cdot \widehat{e}^{\prime}=\cos \theta$, and get

$$
\mathcal{A}=g^{2}\left(\frac{1}{2 p^{2}(1-\cos \theta)+\mu^{2}}+\frac{1}{2 p^{2}(1+\cos \theta)+\mu^{2}}\right) .
$$

Scattering by ϕ exchange leads to an attractive Yukawa potential. This was Yukawa's original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g. the above $N+N$ scattering amplitude gives, upon using $\left(p_{1}-p_{1}^{\prime}\right)^{2}-\mu^{2}=-\left(\left|\vec{p}_{1}-\vec{p}_{1}^{\prime}\right|^{2}+\right.$ μ^{2}), and the Born approximation ${ }^{1}$ in NRQM, $\mathcal{A}_{N R}=\int d^{3} \vec{r} e^{-i\left(\vec{p}^{\prime}-\vec{p} \cdot \vec{r}\right.} V(\vec{r})$, the attractive Yukawa potential

$$
V(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{-(g / 2 m)^{2} e^{i \vec{q} \cdot \vec{r}}}{|\vec{q}|^{2}+\mu^{2}}=-\frac{(g / 2 m)^{2}}{4 \pi r} e^{-\mu r} .
$$

(The $1 /(2 m)^{2}$ is because we normalized the relativistic states with the extra factor of $2 E \approx 2 m$ as compared with standard nonrelativistic normalization ${ }^{2}$. This gives Yukawa's explanation of the attraction between nucleons, from meson exchange. The u-channel term is an exchange potential interaction, which exchanges the positions of the two identical particles in addition to giving a potential. For angular momentum ℓ in a partial-wave expansion, the exchange term differs from the direct one by a factor of $(-1)^{\ell}$.

- More examples:
(1) $N\left(p_{1}\right)+\bar{N}\left(p_{2}\right) \rightarrow N\left(p_{1}^{\prime}\right)+\bar{N}\left(p_{2}^{\prime}\right)$ has

$$
i \mathcal{A}=(-i g)^{2}\left(\frac{i}{\left(p_{1}-p_{1}^{\prime}\right)-\mu^{2}}+\frac{i}{\left(p_{1}+p_{2}\right)-\mu^{2}}\right) .
$$

${ }^{1}$ Max Born, in QM, or Lord Rayleigh classically: $\frac{d \sigma}{d \Omega} \sim|U(\vec{q})|^{2} . S-1 \approx V$ so $\left\langle\vec{p}^{\prime},-\vec{p}^{\prime}\right| S-$ $1|\vec{p},-\vec{p}\rangle \approx\left\langle\vec{p}^{\prime},-\vec{p}^{\prime}\right| V|\vec{p},-\vec{p}\rangle$

2 This is clear on dimensional grounds, since $[g] \sim m$. Write $\langle f| U|i\rangle / \sqrt{\langle f \mid f\rangle\langle | i|i\rangle}$ for the properly normalized amplitude. More generally, write $a(p)=\sqrt{2 E} \widehat{a}(p)$ and $\mathcal{A}=\prod_{i} \sqrt{2 E_{i}} \prod_{f} \sqrt{2 E_{f}} \widehat{\mathcal{A}}$.
(2) $N\left(p_{1}\right)+\bar{N}\left(p_{2}\right) \rightarrow \phi\left(p_{1}^{\prime}\right) \phi\left(p_{2}^{\prime}\right)$ has

$$
i \mathcal{A}=(-i g)^{2}\left(\frac{i}{\left(p_{1}-p_{1}^{\prime}\right)-m^{2}}+\frac{i}{\left(p_{1}-p_{2}^{\prime}\right)-m^{2}}\right) .
$$

(3) $N\left(p_{1}\right)+\phi\left(p_{2}\right) \rightarrow N\left(p_{1}^{\prime}\right)+\phi\left(p_{2}^{\prime}\right)$ has

$$
i \mathcal{A}=(-i g)^{2}\left(\frac{i}{\left(p_{1}-p_{2}^{\prime}\right)-m^{2}}+\frac{i}{\left(p_{1}+p_{2}\right)-m^{2}}\right) .
$$

Note: the $1 / 2$! from expanding $e^{-i \int d^{4} x \mathcal{H}_{I}(x)}$ is cancelled by a factor of 2 from exchanging the two vertices.

- Crossing symmetry, CPT. Write $1+2 \rightarrow \overline{3}+\overline{4}$. Take all momenta incoming, $\mathcal{A}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$, with $p_{1}+p_{2}+p_{3}+p_{4}=0$ and use $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}+p_{3}\right)^{2}$ and $u=\left(p_{1}+p_{4}\right)^{2}$. Note $s+t+u=\sum_{n=1}^{4} m_{n}^{2}$. The process $1+2 \rightarrow \overline{3}+\overline{4}$ is kinematically allowed for $s>4 m^{2}, t<0, u<0$. If instead $u>4 m^{2}$, it's the process $1+3 \rightarrow \overline{2}+\overline{4}$.
- We saw above that the t channel term above is associated with the Yukawa potential. The u channel term is similar. Now consider the s channel, in e.g. the $N+\bar{N}$ scattering amplitude. Using the CM relations $\vec{p}_{1}=-\vec{p} 2 \equiv \vec{p}$ and $E_{1}=E_{2}=\sqrt{p^{2}+m^{2}}$ gives

$$
\mathcal{A} \sim \frac{1}{4 m^{2}+4 p^{2}-\mu^{2}+i \epsilon}
$$

so for $\mu<2 m$ the denominator is always positive, and the amplitude decreases with increasing p^{2}. For $\mu>2 m$ there is a pole at $\left(p_{1}+p_{2}\right)^{2}=\mu^{2}$, where the intermediate meson goes on shell. This leads to a peak (not a pole, of course; because the intermediate particle is unstable anyway, the denominator gets an imaginary contribution from higher order contributions), a resonance, in the cross section. E.g. Z_{0} pole in $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, but not in $e^{+} e^{-} \rightarrow \gamma \gamma$.

- Solve $\mathcal{L}=\frac{1}{2} \partial \phi^{2}-\frac{1}{2} m^{2} \phi^{2}-J(x) \phi$. Using Dyson + Wick's theorem, $U(\infty,-\infty)=$: $e^{O_{1}+\frac{1}{2} O_{2}}$: where $O_{1}=-i \int d^{4} x J(x) \phi(x)$ and $O_{2}=(-i)^{2} \int d^{4} x_{1} d^{4} x_{2} D_{F}\left(x_{1}-x_{2}\right) J\left(x_{1}\right) J\left(x_{2}\right)$. So $O_{2}=\alpha+i \beta$ is a number, whereas O_{1} is an operator. Will lead to probability P_{n} for creating out of the vacuum a state with n mesons given by $P_{n}=e^{-|\alpha|}|\alpha|^{n} / n$!, the Poisson distribution. You'll work out the details in the HW assignment.
- Compute probabilities by squaring the S-maxtrix amplitudes, but have to be careful with the delta functions, since squaring the delta functions would give nonsense.

Warmup: consider quantum mechanics, with $U(t)=T e^{-i \int^{t} H(t) d t}$,

$$
\langle f| U(t)|i\rangle \approx-i\langle f| H_{i n t}|i\rangle \int_{0}^{t} d t e^{i \omega t}
$$

where $\omega=E_{f}-E_{i}$. If we take $t \rightarrow \infty$ first, we get $\delta(\omega)$ and squaring would give nonsense. That's because we're asking the wrong question if we ask about probability for a transition over all time - instead, we should ask about the rate. So keep t finite for now. Squaring gives $\left.P(t)=2\left|\langle f| H_{\text {int }}\right| i\right\rangle\left.\right|^{2}(1-\cos \omega t) / \omega^{2}$. For $t \rightarrow \infty$, multiply by $d E_{f} \rho\left(E_{f}\right)$ and replace $(1-\cos \omega t) / \omega^{2}=4 \sin ^{2}\left(\frac{1}{2} \omega t\right) / \omega^{2} \rightarrow \pi t \delta(\omega)$ (using $\int_{-\infty}^{\infty} d x x^{-2} \sin ^{2} x=\pi$ (hint: $\sin ^{2} x / x^{2}=\left(2-e^{i 2 x}-e^{-i 2 x}\right) / 4 x^{2}$ and close the contour in the correct directions)) to get

$$
\left.\dot{P}_{i \rightarrow f}=2 \pi\left|\langle f| H_{i n t}\right| i\right\rangle\left.\right|^{2} \rho(E) .
$$

This is "Fermi's Golden Rule" - it was actually derived by Dirac, but Fermi used it a lot and called it the golden rule. Another aside: Fermi and Dirac independently discovered that spin $1 / 2$ objects must anticommute, and Dirac generously named such objects "Fermions".

Naively taking $t \rightarrow \infty$ initially would have given amplitude $\sim \delta(\omega)$, and squaring that would give $\delta(\omega)^{2}$, which needs to be replaced with $\delta(\omega) 2 \pi T$, and then divide by T to get the rate. Similarly in field theory, $\delta(p)^{2}$ should be replaced with probability $\sim \delta(p)$ times phase space volume factors.

