
10/28/19 Lecture outline

• Last time: Warmup: consider quantum mechanics, with U(t) = Te−i
∫

t

H(t)dt,

〈f |U(t)|i〉 ≈ −i〈f |Hint|i〉

∫ t

0

dteiωt,

where ω = Ef − Ei. If we take t → ∞ first, we get δ(ω) and squaring would give

nonsense. That’s because we’re asking the wrong question if we ask about probability for

a transition over all time – instead, we should ask about the rate. So keep t finite for now.

Squaring gives P (t) = 2|〈f |Hint|i〉|
2(1 − cosωt)/ω2. For t → ∞, multiply by dEfρ(Ef)

and replace (1−cosωt)/ω2 = 4 sin2( 12ωt)/ω
2 → πtδ(ω) (using

∫

∞

−∞
dxx−2 sin2 x = π (hint:

sin2 x/x2 = (2− ei2x − e−i2x)/4x2 and close the contour in the correct directions)) to get

Ṗi→f = 2π|〈f |Hint|i〉|
2ρ(E).

This is “Fermi’s Golden Rule” – it was actually derived by Dirac, but Fermi used it a lot and

called it the golden rule. Another aside: Fermi and Dirac independently discovered that

spin 1/2 objects must anticommute, and Dirac generously named such objects “Fermions”.

Naively taking t → ∞ initially would have given amplitude ∼ δ(ω), and squaring that

would give δ(ω)2, which needs to be replaced with δ(ω)2πT , and then divide by T to get

the rate. Similarly in field theory, δ(p)2 should be replaced with probability ∼ δ(p) times

phase space volume factors.

• Compute probabilities by squaring the S-maxtrix amplitudes, but have to be careful

with the delta functions, since squaring the delta functions would give nonsense. In QM

we found Ṗi→f = 2π|〈f |Hint|i〉|
2ρ(E) “Fermi’s golden rule.”

• Phase space factors. Put the system in a box of spatial volume V , and time in-

terval T ; as a check, the factors of V and T should cancel in physical results. There are

V d3~k/(2π)3 momentum states with ~k in the range d3~k and TdE/2π energy states in the

range dE. So delta-functions squared in 3-momentum and 4-momenta are replaced as

(2π)3δ3(~p = 0) → V, (2π)4δ4(pµ = 0) → V T

since e.g.
∫

d3~xei~p·~x = (2π)3δ3(~p) gives for ~p = 0:
∫

d3x1 = V . The differential probability

per unit time of a process is

dP

T
=

|〈f |(S − 1)|i〉|2

T 〈i|i〉〈f |f〉

∏

f

V

(2π)3
d3pf =

1

〈i|i〉〈f |f〉
|Afi|

2(2π)4V δ4(pf − pi)
∏

f

V

(2π)3
d3pf .
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Particle states are normalized as 〈k|k〉 = (2π)32Ekδ
3(0) → 2EkV , so

dP

T
=

V
∏

i(2EiV )
|Afi|

2dΠLIPS, dΠLIPS ≡ (2π)4δ4(pf − pi)
∏

f

1

(2π)3(2Ef)
d3pf

where dΠLIPS is the Lorentz invariant phase space for the final states, and it is independent

of V . Verify units: [Ṗ ] = 2(4− ni,tot − nf,tot)− 3 + 2ni,tot − 4 + 2nf,tot = 1, good.

There are two cases to consider for the initial state: a one-body initial states for

a lifetime decay rate, or a two-body initial state for a scattering cross section. Decays:

differential decay probability per unit time: dΓ = 1
2M |Afi|

2dΠLIPS. As expected, it is

independent of V and T . Integrate over all possible final states to get Γ = 1/τ where τ is

the lifetime.

The differential scattering cross section is the scattering number probability per unit

time and flux:

dσ =
dP

TΦ
=

|Afi|
2

4E1E2V Φ
dΠLIPS, V Φ = |~vrel| = |~v1 − ~v2|,

where the density is taken to be one particle per volume V and, as required, V indeed

cancels in the final result. Note that the result is relativistically invariant. Write dNdt =

(dσ|~v1 − ~v2|ρ1ρ2)(V dt), the LHS is the number of collisions, which should be the same in

any frame, and the factor (Vdt) on the RHS is relativistically invariant. For simplicity we

take ~v1 and ~v2 to be parallel, ~v1×~v2 = 0. We want dσ to be defined to be the cross section

in the rest frame of one of the particles, so we want to define it to be boost invariant. So we

need to show that |~v1−~v2|ρ1ρ2 is boost invariant; in the rest frame of particle 2 it reduces to

vrelρ1ρ2, which is what we want. Let’s just check it. Under a boost to a frame with relative

velocity u (taken along the direction of ~v1 and ~v2, we have vi → (vi + u)/(1 + viu) and

ρi → ρiγu(1+ viu) (recall J
µ
i = ρi(1, ~vi) transforms as a 4-vector). Find that |~v1 −~v2|ρ1ρ2

is indeed invariant under boosts in the direction along ~v1 − ~v2. Indeed, if we take p1 and

p2 to both point along the 1 axis, then E1E2|~v1 − ~v2| = |ǫ23µνp1,µp2,ν |, which shows that

it transforms like an area element dx2 ∧ dx3. For our application, we define ρi = 1/V in

the lab frame.

Two body final states (in CM frame): D =
∫

d3~p1

(2π)32E1

d3~p2

(2π)32E2

(2π)4δ3(~p1 + ~p2)δ(E1 +

E2 − ET ) gives

D =

∫

1

(2π)34E1E2
p21dp1dΩ1(2π)δ(E1 +E2 −ET ).

Using E1 =
√

p21 +m2
1 and E2 =

√

p21 +m2
2 get ∂(E1+E2)/∂p1 = p1ET /E1E2 and finally

D = p1dΩ1/16π
2ET . This should be divided by 2! (more generally, n!) if the final states

are identical.
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