
5/15/07 Lecture 12 outline

• Recall operators A map kets to kets, e.g. A|v〉 = |Av〉. Taking the adjoint, 〈Av| =

〈v|A†.

• Ae can write a general operator A as

A =

K∑

ij=1

|ei〉〈ei|A|ej〉〈ej |,

where 〈ei|A|ej〉 = Aij are the matrix elements, and the other pieces are the basis elements

for K × K matrices. Note that we can get the above by using the completeness relation

twice.

The adjoint operation then acts as

A† =

K∑

ij=1

|ej〉〈ej |A
†|ei〉〈ei|,

The order is reversed, and bras and kets are exchanged. Note that 〈ej |A
†|ei〉 = 〈ei|A|ej〉

∗.

• The equation for an eigenvector and eigenvalue is A|ai〉 = ai|ai〉, where the eigen-

vector is labeled by the eigenvalue ai, for i = 1 . . .K.

• Suppose A is Hermitian, A† = A. Then 〈ai|A|ai〉
∗ = ai〈ai|ai〉 = 〈ai|A

†|ai〉 =

ai〈ai|ai〉, from which it follows that ai = a∗i ; the eigenvalues of Hermitian operators are

real.

Also, using A−A† = 0, get 0 = 〈ai(A−A†)|aj〉 = (aj − ai)〈ai|aj〉, so ai 6= aj implies

that 〈ai|aj〉 = 0; eigenvectors with different eigenvectors are orthogonal.

We can use the eigenvectors of a Hermitian operator to form a (complete) basis, with

〈ai|aj〉 = δij and
∑

i |ai〉〈ai| = 1 (if there are many eigenvectors with the same eigenvalue,

all have to be included in these sums). In this basis, A =
∑

i ai|ai〉〈ai| corresponds to

a diagonal matrix. This is the statement that A can be diagonalized by a similarity

transformation, given by the matrix of eigenvectors.

• If [A,B] = 0, then A and B can be simultaneously diagonalized. If [A,B] 6= 0, then

they can not.

• Define expectation values in state |ψ〉 by 〈A〉 ≡ 〈ψ|A|ψ〉. If A is Hermitian, then

〈A〉 is real. Note also that 〈A〉 =
∑

i ai|〈ai|ψ〉|
2.

• Consider the Schwartz inequality with |v〉 = (A − 〈A〉)|ψ〉 and |w〉 = (B − 〈B〉)ψ〉.

It the follows, for A and B Hermitian, that

〈(A− 〈A〉)2〉〈(B − 〈B〉)2〉 ≥ |〈ψ|(A− 〈A〉)(B − 〈B〉)|ψ〉|2.
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Writing (A− 〈A〉)(B − 〈B〉) = 1

2
[A,B] + 1

2
{A− 〈A〉, B − 〈B〉}, it follows that

∆A∆B ≥
1

2
|〈[A,B]〉|.

Now let’s connect all this with what we’ve seen in quantum mechanics.

• In quantum mechanics, we replace physical observables, like x, p, E, etc. with

Hermitian operators. The observed quantities are the eigenvalues. Write e.g.

x̂|x〉 = x|x〉, p̂|p〉 = p|p〉, H|E〉 = E|E〉.

These operators generally act in an infinite dimensional space, the Hilbert space, but this

generally doesn’t complicate things much (from a physicist’s perspective).

• As we have discussed, the operators x̂ and p̂ satisfy [x, p] = ih̄. The fact that

they don’t commute means that they don’t have simultaneous eigenvectors, they can’t be

simultaneously diagonalized.

Their separate eigenkets satisfy 〈x′|x〉 = δ(x − x′), and 〈p′|p〉 = δ(p − p′). The

completeness relations are

∫ ∞

−∞
dx|x〉〈x| = 1op

∫ ∞

−∞
dp|p〉〈p| = 1op.

The relation between these bases is 〈x|p〉 = 1√
2πh̄

eipx/h̄. Note that this satisfies 〈x|p|p〉 =

(−ih̄ d
dx

)〈x|p〉 = p〈x|p〉.

The wavefunction of a QM system is represented by an abstract vector in the Hilbert

space, |ψ〉. The wavefunction in position space is ψ(x) = 〈x|ψ〉. The wavefunction in

momentum space is φ(p) = 〈p|ψ〉. Explain the meaning of the Fourier transform between

them, with 〈x|p〉.

• Measurement (this is a key point!): If measuring observable to operator A,

write |ψ〉 =
∑

i |ai〉〈ai|ψ〉 (using completeness). The probability to measure A = ai in this

state is then |〈ai|ψ〉|
2. Immediately after the measurement, the wavefunction collapses,

|ψ〉 → |ai〉. If operators A and B commute, they can be simultaneously diagonalized.

Discuss measurement and operators which do, or do not, commute.

• The Schrodinger equation in this notation is

ih̄
∂

∂t
|ψ(t)〉 = H|ψ〉.

The way we wrote it before was in the x basis. Discuss it in other bases.
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