
5/29/07 Lecture 16 outline

• Note that different components of the angular momentum don’t commute! Angular

momentum commutation relations [Lx, Ly] = ih̄Lz and cyclic permutations. Implies that

we can’t measure different components simultaneously.

• Convention is to diagonalize Lz. Show that [L2, Lz] = 0, so can also diagonalize L2.

Let’s call their eigenkets |α, β〉, where L2|α, β〉 = α|α, β〉, and Lz|α, β〉 = β|α, β〉. If we

measure L2 and Lz in an experiment, the eigenvalues α and β, respectively, are the only

possible outcomes. The above angular momentum commutation relations constrain α and

β, and implies that they are quantized.

• Classically, α could take any non-negative value, α ≥ 0. And classically, β can take

any value, in the range −√
α ≤ β ≤ √

α, since the z component of the vector ~L can’t exceed

±|~L|. We can prove these same inequalities in Q.M., and actually make them even stronger.

To prove the inequalities, recall that for any ket |ψ〉, the bra-ket 〈ψ|ψ〉 ≡ |||ψ〉||2 ≥ 0, with

|||ψ〉||2 ≥ 0 if and only if the ket vanishes, |ψ〉 = 0. Moreover, for any operator A,

〈A†A〉 ≡ 〈ψ|A†A|ψ〉 ≡ ||A|ψ〉||2 ≥ 0,

again with equality iff A|ψ〉 = 0. In QM we have L†
a = La, as is the case for all physical

observables. So we see from the above that 〈L2
x〉 ≥ 0, and 〈L2

y〉 ≥ 0 and 〈L2
z〉 ≥ 0.

In particular, in the state |ψ〉 = |α, β〉, we have 〈L2〉 = α ≥ 0, and also 〈L2
x + L2

y〉 =

〈L2 − L2
z〉 = α − β2 ≥ 0. So the classical inequalities are satisfied. But the classical

inequality α−β2 ≥ 0 is too weak in general: note that α−β2 = 〈L2
x〉+ 〈L2

y〉, and we can’t

set both terms on the right hand side to zero, in general, because of the [Lx, Ly] = ih̄Lz,

which implies an uncertainty principle-like inequality for the product ∆Lx∆Ly, saying

that both can’t vanish. To show this, and more, let’s introduce the L± operators.

• Raising and lowering operators (analogous to creation and annihilation operators in

SHO): L± ≡ Lx ± iLy, satisfy [Lz, L±] = ±h̄L±. It then follows that L±|αβ〉 ∼ |α, β± h̄〉.
Note that [L2, L±] = 0, so L± raise and lower the Lz component of angular momentum,

but leave the magnitude L2 of the angular momentum vector unchanged. It’s like they

rotate the ~L vector to point more, or less, along the ẑ axis.

• Note L±L∓ = L2 −L2
z ± h̄Lz, and that L†

± = L∓. So 〈L±L∓〉 ≥ 0 and 〈L±L∓〉 ≥ 0

in any state. In particular, in the state |αβ〉 we have

〈L+L−〉 = α− β2 + h̄β ≥ 0 and 〈L−L+〉 = α− β2 − h̄β ≥ 0,
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where we’ve fixed the normalization by 〈α, β|α, β〉 = 1. Note that this also determines the

normalization in L±|αβ〉 ∼ |α, β ± h̄〉:

L±|α, β〉 =
√
α− β2 ∓ h̄β|α, β ± h̄〉.

• But we saw that we can raise and lower β by acting on |α, β〉 with L±, which

leaves α unchanged but takes β → β ± h̄. If α and β were general numbers, we’d then

violate the above inequalities. The only way to avoid this is if there is a βmax, such that

L+|α, βmax〉 = 0, and a βmin such that L−|α, βmin〉 = 0. It follows from the above then

that α = β2
max + βmaxh̄ = β2

min − βminh̄. So βmin = −βmax. Moreover, must have that

LN
− |α, βmax〉 ∼ |α, βmax −N〉 must eventually vanish, so there is some integer N such that

βmax −N = βmin, i.e. 2βmax = N . So βmax can either be an integer or a half integer.

• For orbital angular momentum, βmax ≡ ` is an integer. Nature also use the half-

integer possibility, in the context of spin: fermions have half-integer total angular momen-

tum, given by ~J = ~L+ ~S, where ~L is the orbital part and ~S is the spin part. Ignore ~S for

now, discuss it later.

• Instead of labeling the kets by α and β, label by ` and m, where α = h̄2`(`+1) and

β = h̄m, and m runs from ` to −`, in integer steps (so there are 2`+ 1 values of m):

L2|`,m〉 = h̄2`(`+ 1)|`,m〉 Lz|`,m〉 = mh̄|`,m〉

and

L±|`,m〉 = h̄
√
`(`+ 1) −m2 ∓m|`,m± 1〉.

• The |`,m〉 form a complete, orthonormal basis:

〈`′, m′|`,m〉 = δ`,`′δm,m′

∞∑

`=0

∑̀

m=−`

|`,m〉〈`,m| = 1.

• Next time: Consider these kets in position space. Use spherical coordinates. The

|`,m〉 states are independent of the radial coordinate, r; they depend only on θ and φ.

To see why, write ~L = ~x × ~p in position space, by replacing ~p → −ih̄∇. Converting to

spherical coordinates, get

Lz → −ih̄ ∂

∂φ
L± → h̄e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)

and

L2 → −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
.
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