
4/19/07 Lecture 6 outline

• Today’s lecture is on the Schrodinger equation, which is the primary equation of

quantum mechanics. It’s as central as ~F = m~a is to classical mechanics. As in that case,

it gives a way to determine how systems evolve in time, given some initial state. We

can motivate the Schrodinger equation from some general principles of classical mechan-

ics: the notion of conjugate variables. Examples of conjugate variables are position and

momentum. Energy and time are also conjugate variables.

Let’s discuss that. But first, state the main message of today’s lecture: the wavefunc-

tion evolves in space and time according to ~p = h̄~k and E = h̄ω, even if the particle is not

free.

Now, some classical mechanics. In the Hamiltonian description, consider motion in

(q, p) phase space. (Note: the uncertainty principle can be interpreted as saying that phase

space is pixelated, with a basic pixel size ∆q∆p = 1
2 h̄. This is very useful in statistical

mechanics! ) Recall Poisson brackets, {u, v} ≡ ∂u
∂qi

∂v
∂pi

− ∂u
∂pi

∂v
∂qi . Note that: {u, pi} = ∂u

∂qi

.

Also, d
dtu = ∂

∂tu + {u,H}. These relations illustrate the statements that momentum

generates translations in space, and energy generates translations in space.

• In quantum mechanics, these relations are related to p = h̄k and E = h̄ω and that

wavefunctions depend on position and time as ψ ∼ ei(~p·~x−Et)/h̄. Related to uncertainty

principles:

∆p∆x ≥
h̄

2
∆E∆t ≥

h̄

2

• Illustrate this for expectation values in QM. Recall we compute expectation values

using probabilities, e.g.

〈f(x)〉 =

∫ ∞

−∞

f(x)|ψ(x, t)|2dx, 〈F (p)〉 =

∫ ∞

−∞

F (p)|φ(p)|2dp.

• We can now define more precisely what we mean by ∆x and ∆p in the uncertainty

principle:

∆x ≡
√

〈x2〉 − 〈x〉2 ∆p ≡
√

〈p2〉 − 〈p〉2.

These always satisfy ∆x∆p ≥ h̄
2 . You can check that the gaussians have ∆x = σ and

∆p = σ̃, according to the definitions used in lecture the other week.

• Can always compute either in position or momentum space, e.g.

〈f(x)〉 =

∫ ∞

−∞

φ∗(p, t)f(ih̄
d

dp
)φ(p, t)dp, 〈F (p)〉 =

∫ ∞

−∞

ψ∗(x, t)F (−ih̄
d

dx
)ψ(x, t)dx,
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where φ(p, t) = φ(p)e−iE(p)t/h̄. In position space, we replace p→ −ih̄ d
dx and in momentum

space we replace x → ih̄ d
dp . This lead into the basic postulates of Q.M. Examples: use

above gaussian wavefunction, 〈p〉 = p0 and 〈x〉 = p0t/m. Expectation values satisfy

expected classical relations , example of Ehrenfest’s theorem.

• In QM, the statements about momentum and energy being the generators of trans-

lations in space and time can be written as

p→ −ih̄
∂

∂x
, E → ih̄

∂

∂t
.

Leads to the Schrodinger equation

Hψ = ih̄
∂

∂t
ψ

for time evolution of the wave function. H is the Hamiltonian, H = p2/2m+ V (x), which

yields the energy. This says that a state of energy E evolves in time as ψ ∼ e−iEt/h̄, as for a

free particle, i.e. E = h̄ω. A motivation: waves have the same frequency ω even in regions

where the velocity changes, e.g light between materials of different index of refractions. In

H = p2/2m+ V (x), replace p→ −ih̄ ∂
∂x . Or in 3d, ~p→ −ih̄∇.

• The momentum operator p = −ih̄ d
dx

is a Hermitian operator, p† = p. Show why.

Implies that eigenvalues are always real. Implies its expectation value is always real. The

x operator is also Hermitian, x† . The Hamiltonian operator is Hermitian (for real V (x)),

so the energy eigenvalues are all real, and the expectation value of the energy is real.
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