130a Homework 1, due 4/10

1. Consider the harmonic oscillator: a particle of mass m is on a frictionless surface, and connected to a spring. Let x be the displacement of the mass from equilibrium. The spring provides the restoring force $F_x = -\kappa x$.

(a) Write the E.O.M. (equations of motion) and show that a solution is $x_{sol}(t) = \text{Re}Ae^{-i\omega t}$ where $\omega = \sqrt{\kappa/m}$.

- (b) Write the Hamiltonian H(x, p) = K.E. + P.E. in terms of x and p.
- (c) Verify that the Hamilton equations

$$\dot{x} = rac{\partial H}{\partial p}$$
 $\dot{p} = -rac{\partial H}{\partial q}$

are satisfied. The above equations are particular cases of what can be written more generally as

$$\frac{df}{dt} = \{f, H\}_{P.B}$$

where f = f(x, p) is any function of x and p, with no explicit t dependence, and where the Poisson Bracket is defined as

$$\{A, B\}_{P.B.} \equiv \frac{\partial A}{\partial x} \frac{\partial B}{\partial p} - \frac{\partial A}{\partial p} \frac{\partial B}{\partial x}$$

(d) Pug in the above solution $x_{sol}(t)$ and verify that $H(x_{sol}, p_{sol}) = \frac{1}{2}m\omega^2 A^2$, i.e. a constant independent of time. This happens whenever H does not have explicit t dependence (i.e. it only depends on t implicitly, via x and p). This is a statement of conservation of energy.

(e) Show that $\langle \langle K.E. \rangle \rangle = \langle \langle P.E. \rangle \rangle = \frac{1}{4}m\omega^2 A^2$, where $\langle \langle \cdot \rangle \rangle$ denotes the time-average of the quantity inside over an oscillation period T, i.e. $\langle \langle f \rangle \rangle \equiv \frac{1}{T} \int_0^T dt f(t)$.

- 2. In class, we found $e(\omega, T)d\omega$ the power per unit area emitted in the frequency range $d\omega$. Substitute $\omega = 2\pi c/\lambda$ and define $\tilde{e}(\lambda, T)d\lambda = e(\omega, T)d\omega$. The function $\tilde{e}(\lambda, T)$ has a maximum at wavelength λ_{peak} . Verify that $\lambda_{peak}T = b$ for some constant b, and write the equations that determines b. This yields Wein's law $\lambda_{peak}T \approx 2.898 \times 10^{-3} Km$.
- 3. The sun radiates power $P = 4.5 \times 10^{25} W$. What is the radiated power of a star whose radius is a factor of 3 bigger than that of the sun, and whose peak wavelength is a factor of 4 bigger than the peak wavelength of the sun?

- 4. Consider a spherical cavity of radius 1 meter. How many possible light wave modes are there in the cavity having frequency in the spectrum that's visible to the human eye (wavelengths in the range from $4 \times 10^{-7}m$ and $7 \times 10^{-7}m$)?
- 5. When light of a certain wavelength λ is incident on a certain metal, the stopping potential for the photoelectron current is found to be 5V. When light of wavelength 2λ is incident on the same metal, the stopping potential is 1V. What is the work function of the metal, in units of eV?