130a Homework 4, due 5/1

- 1. Shankar 1.8.10 (page 46).
- 2. Recall the definition of adjoint: if $A|\psi\rangle \equiv |A\psi\rangle$, then $\langle A\psi|\chi\rangle = \langle \psi|A^{\dagger}|\chi\rangle$, for any $|\psi\rangle$ and $|\chi\rangle$. Recall the definition of Hermitian: A is Hermitian $A = A^{\dagger}$.
 - (a) Show that. if A and B are Hermitian, then so is $(A + B)^n$.
 - (b) Show that, if A and B are Hermitian, then so is i[A, B].
 - (c) Use the definition above to show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
 - (d) Show that $A^{\dagger}A$ is Hermitian, even if A is not.
- 3. Consider a K = 2 dimensional, complex vector space, with orthonormal basis kets $|e_i\rangle$, for i = 1, 2. (For example, you can take $|e_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|e_2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$). Consider the operator $A = e^{i\phi}|e_1\rangle\langle e_2| + e^{-i\phi}|e_2\rangle\langle e_1|$, where ϕ is an arbitrary real number.
 - (a) Verify that $A^{\dagger} = A$.
 - (b) Compute the eigenvalues λ_1 and λ_2 of A, and verify that they are real.

(c) Find the corresponding eigen-kets $|\lambda_1\rangle$ and $|\lambda_2\rangle$, as linear combinations of the $|e_i\rangle$. Verify that the $|\lambda_i\rangle$ are orthogonal, and normalize them so that they are orthonormal, $\langle \lambda_i | \lambda_j \rangle = \delta_{ij}$.

(d) Using the above results, explicitly verify that $A = \sum_{i=1}^{2} \lambda_i |\lambda_i\rangle \langle \lambda_i |$.

(e) Compute the expectation value of the operator A, defined to be $\langle A \rangle \equiv \langle \psi | A | \psi \rangle$, in the state $|\psi\rangle \geq \equiv a |e_1\rangle + b |e_2\rangle$, where a and b are arbitrary *complex* numbers. (Your answer for $\langle A \rangle$ should be real, since that's the case for any Hermitian operator, in any state.)

- 4. Shankar 1.10.4.
- 5. This problem is a simpler variant of 4.2.1 in Shankar. Consider the following three hermitian operators

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

These are operators on a K = 2 dimensional space.

(a) What are the possible values one can measure if C is measured?

(b) Take the state in which C = 1. In this state, what are the values of $\langle A \rangle$ and $\langle A^2 \rangle$ and ΔA ?

(c) If the state is measured to have C = 1, and subsequently A is measured, what are the possible outcomes of the A measurement, and with what probabilities?

(d) Suppose that you first measures C = 1, what is the probability that an immediately subsequent measurement of C again in the state will yield $C \neq 1$?

(e) Suppose that you first measure C = 1, and then you measure that A = 1, what is the probability that, immediately after, you next measure C again and find $C \neq 1$?

(f) Compute [A, C] and comment on how the answer fits with how your results for how parts (d) and (e) above compare.

6. Using $[\hat{x}, \hat{p}] = i\hbar$, verify

(a) that $\hat{a} \equiv \sqrt{\frac{\alpha}{2\hbar}}\hat{x} + i\sqrt{\frac{1}{2\alpha\hbar}}\hat{p}$ satisfies $[\hat{a}, \hat{a}^{\dagger}] = 1$, for arbitrary real parameter α .

(b) Compute $a^{\dagger}a$ and show that it has three terms, one proportional to \hat{x}^2 , one to \hat{p}^2 , and a constant.