5/1/08 Lecture 10 outline
e Continue from last time: |¢) is a quantum state, which can be written in x-basis as

Y(x) = (z]1h) or in p-basis as ¢(p) = (p|v). Either gives a complete, orthogonal basis

/d:r:|33)(x| =1, (2'|z) = §(x — 2')
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transforms. Continue to relate this to what we saw before about Fourier transforms and

and the change of basis is via (z|p) = eP*/? which leads to the formulae of Fourier

computing e.g. (f(z)) and (F(p)) in position or momentum space. The wavefunction in

position space is ¥ (z) = (z|).

e If measuring observable to operator A, write 1)) = Y. |a;)(ai|?)) (using complete-
ness). The probability to measure A = a; in this state is then |(a;|1)|?>. Immediately
after the measurement, the wavefunction collapses, [¢) — |a;). If operators A and B
commute, they can be simultaneously diagonalized, and measurements of A and B don’t
interfere with each other. If they don’t commute, they can’t be simultaneously measured:
measuring one alters the state of the other.

e Aside: consider the Schwartz inequality with |v) = (A — (4))|¢)) and |w) = (B —

(B))v). It the follows, for A and B Hermitian, that
(A= (A)N(B = (B))?) = [(¥l(A = (A)(B — (B) ).
Writing (4 — (A))(B — (B)) = 1[4, B] + 1{A — (A), B— (B)}, it follows that

AAAB > %|([A, B))|.

e Time evolution: In classical physics, any phase space variable u(p;, ¢;,t) has ‘é—zt‘ =

% +{u,H}pp.. We go from C.M. to Q.M. by replacing {A, B} — (1/ih)[A, B], and

classical relations with Q.M. expectation values. So in Q.M. we have
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L wuly = 01 2410) + - . H]Je).

In the Schrodinger picture, this can be understood as coming from the time-evolution of

the state-ket, according to the Schrodinger equation:
in () = Hlo)
ot B '
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Corresponds to the statement that the Hamiltonian is the generator of time translations.
e Energy eigenstates, a.k.a. eigenkets of the Hamilton, have a very simple time evolu-
tion. If H|E) = E|E), then the time evolution is just by the phase factor |E) — e™*F¥/"|E),

which fits with F = hw. Energy eigensates form a complete basis, so

wie=0) =3 [ IE)EIY)

and the time evolution is to

wlt) =3 [ e B mE) (El).

e Free particle. H = p?/2m. Momentum is conserved, because [H,p] = 0, and the
energy eigenstates are simple the momentum eigenstates, H|p) = E(p)|p), with E(p) =
p?/2m. An energy eigenstate can be a superposition of momentum eigenstates, |E) =
cilp = V2mE) + cz|lp = —V2mE). Measuring the energy leaves the momentum sign
degenerate, so the state could still be in a quantum superposition of moving left and right.
Measuring the momentum would collapse the state to one or the other. The momentum

eigenstates form a complete basis, so any wavefunction can be written as
)= [ ool
and the time evolution is given by
WO = [ dp e e = 0).

Recall example of Gaussian wavepacket:
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<l’|¢(t—0)> - (7TA2)1/46 e
has (X) = 0, (P) = py, AX = A/V?2, and AP = h/Av2. Time evolution, using the
1/2
above, gives a state with (X) = (P)t/m, and (P) = pgp and AX (t) = % (1 + %) .
This is the spreading of the wavepacket discussed before.



