
5/1/08 Lecture 10 outline

• Continue from last time: |ψ〉 is a quantum state, which can be written in x-basis as

ψ(x) = 〈x|ψ〉 or in p-basis as φ(p) = 〈p|ψ〉. Either gives a complete, orthogonal basis

∫

dx|x〉〈x| = 1, 〈x′|x〉 = δ(x− x′)

∫

dp|p〉〈p| = 1, 〈p′|p〉 = δ(p− p′)

and the change of basis is via 〈x|p〉 = 1√
2πh̄

eipx/h̄, which leads to the formulae of Fourier

transforms. Continue to relate this to what we saw before about Fourier transforms and

computing e.g. 〈f(x)〉 and 〈F (p)〉 in position or momentum space. The wavefunction in

position space is ψ(x) = 〈x|ψ〉.
• If measuring observable to operator A, write |ψ〉 =

∑

i |ai〉〈ai|ψ〉 (using complete-

ness). The probability to measure A = ai in this state is then |〈ai|ψ〉|2. Immediately

after the measurement, the wavefunction collapses, |ψ〉 → |ai〉. If operators A and B

commute, they can be simultaneously diagonalized, and measurements of A and B don’t

interfere with each other. If they don’t commute, they can’t be simultaneously measured:

measuring one alters the state of the other.

• Aside: consider the Schwartz inequality with |v〉 = (A − 〈A〉)|ψ〉 and |w〉 = (B −
〈B〉)ψ〉. It the follows, for A and B Hermitian, that

〈(A− 〈A〉)2〉〈(B − 〈B〉)2〉 ≥ |〈ψ|(A− 〈A〉)(B − 〈B〉)|ψ〉|2.

Writing (A− 〈A〉)(B − 〈B〉) = 1

2
[A,B] + 1

2
{A− 〈A〉, B − 〈B〉}, it follows that

∆A∆B ≥ 1

2
|〈[A,B]〉|.

• Time evolution: In classical physics, any phase space variable u(pi, qi, t) has du
dt =

∂u
∂t

+ {u,H}P.B.. We go from C.M. to Q.M. by replacing {A,B} → (1/ih̄)[A,B], and

classical relations with Q.M. expectation values. So in Q.M. we have

d

dt
〈ψ|u|ψ〉 = 〈ψ|∂u

∂t
|ψ〉 +

1

ih̄
〈ψ|[u,H]|ψ〉.

In the Schrodinger picture, this can be understood as coming from the time-evolution of

the state-ket, according to the Schrodinger equation:

ih̄
∂

∂t
|ψ(t)〉 = H|ψ〉.
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Corresponds to the statement that the Hamiltonian is the generator of time translations.

• Energy eigenstates, a.k.a. eigenkets of the Hamilton, have a very simple time evolu-

tion. IfH|E〉 = E|E〉, then the time evolution is just by the phase factor |E〉 → e−iEt/h̄|E〉,
which fits with E = h̄ω. Energy eigensates form a complete basis, so

|ψ(t = 0)〉 =
∑

∫

|E〉〈E|ψ〉

and the time evolution is to

ψ(t)〉 =
∑

∫

e−iEt/h̄|E〉〈E|ψ〉.

• Free particle. H = p2/2m. Momentum is conserved, because [H, p] = 0, and the

energy eigenstates are simple the momentum eigenstates, H|p〉 = E(p)|p〉, with E(p) =

p2/2m. An energy eigenstate can be a superposition of momentum eigenstates, |E〉 =

c1|p =
√

2mE〉 + c2|p = −
√

2mE〉. Measuring the energy leaves the momentum sign

degenerate, so the state could still be in a quantum superposition of moving left and right.

Measuring the momentum would collapse the state to one or the other. The momentum

eigenstates form a complete basis, so any wavefunction can be written as

|ψ〉 =

∫ ∞

−∞
dp|p〉〈p|ψ〉

and the time evolution is given by

|ψ(t)〉 =

∫ ∞

−∞
dp e−ip2t/2mh̄|p〉〈p|ψ(t = 0)〉.

Recall example of Gaussian wavepacket:

〈x|ψ(t = 0)〉 =
1

(π∆2)1/4
eip0x/h̄e−x2/2∆

2

has 〈X〉 = 0, 〈P 〉 = p0, ∆X = ∆/
√

2, and ∆P = h̄/∆
√

2. Time evolution, using the

above, gives a state with 〈X〉 = 〈P 〉t/m, and 〈P 〉 = p0 and ∆X(t) = ∆√
2

(

1 + h̄2t2

m2∆4

)1/2

.

This is the spreading of the wavepacket discussed before.
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