
5/15/08 Lecture 13 outline

• Particle in a finite depth box,

V (x) =

{

−V0 |x| < a
0 |x| ≥ a

.

The solutions are then either even:

ψE(x) =

{

Aeκx x < −a
B cos kx |x| ≤ −a
Ce−κx x > a,

where κ =
√

2mE/h̄ and k =
√

2m(V0 − |E|)/h̄, with C = A, or similarly for the odd

solution but with cos replaced with sin and C = −A.

Note that if we write E = K.E.+P.E., then the particle has positive kinetic energy in

region II, K.E. = E−V = V0−|E| > 0, whereas the particle has “negative kinetic energy”

in regions I and II, K.E. = E = −|E|. There are always oscillatory solutions where the

kinetic energy is positive, and exponentially decaying solutions where the kinetic energy is

negative. The above solution exhibits this general property.

The matching relation for the even solution gives

κ = k tan(ka),

and the matching for the odd solutions gives

κ = −k cot(ka).

There is always at least one even solution, which is the groundstate. Depending on how

large 2mV0a
2

h̄2 is, there can be additional solutions, of increasing bound state energies,

alternating between the even and odd solutions. To see how this works, consider a graphical

solution of the above equations. Let κa = η and ka = ξ. The even matching equation can

be written as

η = ξ tan ξ, η2 + ξ2 =
2mV0a

2

h̄2
.

Plot the two equations and look for intersections of the plots. The odd solutions have

η = −ξ cot ξ, η2 + ξ2 =
2mV0a

2

h̄2
.

There are only odd boundstates if 2mV0a
2

h̄2 is sufficiently large.
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• In the HW you will consider exercise 5.2.2b in Shankar. Let”s prove 5.2.2a: 〈H〉 ≥ E0

in any state. Then show that it is possible to find a |ψ〉 such that 〈H〉 < 0.

• Now lets consider the unbound solutions of the above example, with E > 0. Write

a solution corresponding to an incoming particle, traveling to the right.

ψE(x) =







eik1x +Ae−ik1x x < −a
Beik2x + Ce−ik2x |x| ≤ −a
Deik1x x > a,

where k1 =
√

2mE/h̄ and k2 =
√

2m(E + V0)/h̄. Matching ψ′/ψ at the boundaries yields

equations for A,B,C,D. Let’s first discuss some general points and work out explicitly a

simpler example.

• Probability flux and conservation. We can state it in 1d, but it’s more clear, and

not too much more difficult, to say how it works in 3d. The 3d S.E., in position space, is

ih̄
∂

∂t
ψ(~x, t) = Hψ =

(

− h̄2

2m
∇2 + V (~x)

)

ψ.

It follows from this that

∂

∂t
ρ(~x, t) + ∇ ·~j = 0, ρ ≡ ψ∗ψ, ~j =

h̄

2mi
(ψ∗ ∇ψ − ψ∇ψ∗).

This is the statement of conservation of probability density. Classically the particle can’t

appear or disappear, particle number is conserved. In (non-relativistic) QM, this is a

corresponding statement, that the probability a particle appears in a volume element can

only change in time if there is a current flux through the surface. ~j is the probability flux

current density,

• Comments on delta function potential, and how the ψ′ matching is affected (useful

for the HW problems!): integrate the S.E. across the delta function potential to get

− h̄2

2m

dψ

dx

∣

∣

x+ε

x−ε
+

∫ x+ε

x−ε

V (x)ψ(x) = 0,

where the second term only contributes if V (x) has a delta function. Then the above

equation shows that ψ′ has a specific discontinunity across that x.
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