
5/27/08 Lecture 16 outline

• Last time; HSHO = p2/2m + 1

2
mω2x2 = h̄ω(a†a + 1

2
), where a =

√
mω
2h̄ x̂ +

i(2mωh̄)−1/2p̂ and a† satisfy [a, a†] = 1. We saw a†a|λ〉 = λ|λ〉, with λ ≥ 0 and

a|λ〉 =
√
λ|λ− 1〉, and a†|λ〉 =

√
λ+ 1|λ+ 1〉. Note that ak|λ〉 ∼ |λ− k〉.

• Must then have a state annihilated by a, i.e. λ = n and a|0〉 = 0.

• Thus Hsho|n〉 = En|n〉 with En = (n+ 1

2
)h̄ω. Moreover, |n〉 = (n!)−1/2(a†)n|0〉.

• Using a =
√

mω
2h̄
x̂ + i(2mωh̄)−1/2p̂, convert the above to position space. E.g. get

ψ0(x) = (mω/πh̄)1/4 exp(−mωx2/2h̄) from 〈x|a|0〉 = 0, as a simple differential equation in

position space. Can similarly use a and a† in position space to get all the ψn(x). Defining

y ≡
√
mω/h̄x, get

ψn(x) = (2nn!)−1/2(mω/πh̄)1/4(y − d

dy
)ne−y2/2.

But it’s almost always better to work with the basis independent bras, kets, and the

operators a and a†.

• The states |n〉, with n = 0, 1, 2 . . ., form an orthonormal, complete basis:

〈n|m〉 = δnm and

∞∑

n=0

|n〉〈n| = 1op.

The annihilation and operators act on them as

a|n〉 =
√
n|n− 1〉 a†|n〉 =

√
n+ 1|n+ 1〉.

To compute things like 〈n|x̂k|m〉 etc, it is useful to express x̂ and p̂ in terms of a and a†,

using

x̂ =

√
h̄

2mω

(
a+ a†

)
p̂ = −i

√
mωh̄

2

(
a− a†

)
.

• Example: Evaluate ∆x and ∆p in the state |1〉. Use ∆x2 = 〈x2〉 − 〈x〉2 and

∆p2 = 〈p2〉 − 〈p〉2. Note that 〈1|ak|1〉 = 0 for all k > 0. Thus 〈x〉 = 〈p〉 = 0 in the state

|1〉. To compute 〈x2〉, use x̂2 = h̄
2mω

(a+a†)2, and note that only the 2nd and 3rd terms in

(a+a†)2 = a2 +aa† +a†a+a†2 give a non-zero contribution when sandwiched between 〈1|
and |1〉. To compute these, use the above expressions for how a and a† act on |n〉 to get

a†a|1〉 = |1〉, and aa†|1〉 = 2|1〉, so 〈x2〉 = h̄
2mω (1+2). Likewise, get 〈p2〉 = −mωh̄

2
(−1−2).

Note that ∆x∆p = 3

2
h̄, so the uncertainty principle inequality is comfortably satisfied.
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• Consider an operator O, which is built up out of the position and momentum

operators, without explicit dependence on t. It follows from the quantization of the classical

Poisson brackets, or from the Schrodinger equation, that

ih̄
d

dt
〈O〉 = 〈[O, H]〉.

Operators for which [O, H] = 0 can be measured simultaneously with the energy, and

their expectation values are conserved in time. This is the quantum analog of classical

statements about conserved quantities, which are generally associated with symmetries.

• Our next topic is QM in 3 space dimensions. An important case is when there

is rotation symmetry. Then angular momentum is conserved. We can see that because

[H, ~L] = 0. So we can simultaneously measure energy and some components of angular

momentum.

• But note that different components of the angular momentum don’t commute! An-

gular momentum commutation relations [Lx, Ly] = ih̄Lz and cyclic permutations. Implies

that we can’t measure these different components simultaneously.
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