5/29/08 Lecture 17 outline
e Last time note that different components of the angular momentum don’t commute!
Angular momentum commutation relations [L,, L] = AL, and cyclic permutations. Im-
plies that we can’t measure these different components simultaneously.
e Convention is to diagonalize L,. Show that [L?, L,] = 0, so can also diagonalize L>.
We can prove that the L? and L, eigenvalues are quantized in units of &, and labeled by

integers ¢ and m:
L2tm) = R0+ D)|em)  L.|¢m) = hml|ém)

where
(=0,1,2... and m=—0,—CL+1,...0,

so there are 2¢+ 1 choices for m. Note that the units work, since i has the units of angular
momentum. Note that the maximum of L? is h202, which is less than L?; this is because
(L, L] = ihL, forbids setting L2 4+ L to zero for non-zero L..

e Here is how to prove the above. Recall that for any ket |¢), the bra-ket (¢|¢) =
[[)]]? > 0, with |[|s)||> > 0 if and only if the ket vanishes, |¢)) = 0. Moreover, for any
operator A,

(ATA4) = (v|ATAly) = [|Al)|* > 0,

again with equality iff A¢)) = 0. In QM we have L] = L,, as is the case for all physical
observables. So we see from the above that (L2) > 0, and (L2) > 0 and (L2) > 0. To do
better, introduce:

e Raising and lowering operators (analogous to creation and annihilation operators in
SHO): Ly = L, +iL,, satisfy [L,, L] = +hLy and [L?, Ly] = 0. It follows that L, raises
the L, eigenvalue by #h, but leaves alone the L? eigenvalue. Let’s call L?|af8) = alaf)
and L.|a8) = Bla/3). We then get Li|af) ~ |a, 3+ h). The Ly rotate the L vector to
point more, or less, along the Z axis.

e Note LyLz = L2 — L2+ hL,, and that L} = L=. So (L+L=) >0 and (L+Lz) >0

in any state. In particular, in the state |o3) we have
(LyL_Y=a—-3*+h3>0 and (L_.Ly)=a—3*—-hB>0,

where we’ve fixed the normalization by («, 5|a, 3) = 1. Note that this also determines the

normalization in Ly |af) ~ |a, f + h):

Lila, B) = Va— 3 F hfla, B £ h).
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e But we saw that we can raise and lower 3 by acting on |«, 5) with L, which leaves
a unchanged but takes § — 3+ h. If @ and § were general numbers, by enough raising
or lowering we’d eventually violate the above inequalities. The only way to avoid this is
if there is a B4z, such that Ly |, Bmaz) = 0, and a B, such that L_|a, Bin) = 0. It
follows from the above then that oo = fmm + Bmazh = @%Lm — Bminh. SO Bmin = —Bmaz-
Moreover, must have that LY |a, Bmaz) ~ |o, Bmae — N) must eventually vanish, so there
is some integer N such that G0 — N = Bmin, 1.€. 20maz = IN. S0 Binaz can either be an
integer or a half integer.

e For orbital angular momentum, f,,,, = ¢ is an integer. Nature also use the half-
integer possibility, in the context of spin: fermions have half-integer total angular momen-
tum, given by J=L+S , Where L is the orbital part and S is the spin part. Ignore S for
now, discuss it later.

e Instead of labeling the kets by a and 3, label by ¢ and m, where a = hQE(E +1) and

B = hm, and m runs from ¢ to —¢, in integer steps (so there are 2¢ 4+ 1 values of m):
LY, m) = R+ D)|e,m)  L.[¢,m) =mhll,m)

and

Lill,m) =hl(l+1)—m2Fmll,m+1).

e The |¢,m) form a complete, orthonormal basis:

[e’e) £
(¢ ml0m) =0 bmm Y Y 6m){,m|=1.
=0 m=—/¢

e Now consider these kets in position space.
Use spherical coordinates. The |¢, m) states are independent of the radial coordinate,
r; they depend only on # and ¢. To see why, write L=7x P in position space, by replacing
p — —ih V. Converting to spherical coordinates, get
0 - 0 0
L, — —ih=—— Ly — he®™® (£ +icotf—
9 * ( 0 a6

and

1”2 1 9 9
2 32 9 (. 0
L= Gze a6 T smo o0 <Sm939)] '

In position space the L? and L, eigenkets become (0, ¢|¢,m) = Yy, (0,¢). Their
definition in terms of their eigenvalue equations, L2Yy (8, ¢) = h20(¢ + 1)Yy, (6, ¢) and
L.Y; m(6,¢) = mhYy,,(0,¢) are well known equations: the Yy ,, (6, ¢) are the Spherical

Harmonics, which always enter in solving problems in spherical coordinates.



