5/29/08 Lecture 17 outline

• Last time note that different components of the angular momentum don't commute! Angular momentum commutation relations $[L_x, L_y] = i\hbar L_z$ and cyclic permutations. Implies that we can't measure these different components simultaneously.

• Convention is to diagonalize L_z . Show that $[L^2, L_z] = 0$, so can also diagonalize L^2 . We can prove that the L^2 and L_z eigenvalues are quantized in units of \hbar , and labeled by integers ℓ and m:

$$L^{2}|\ell m\rangle = \hbar^{2}\ell(\ell+1)|\ell m\rangle \qquad L_{z}|\ell m\rangle = \hbar m|\ell m\rangle$$

where

$$\ell = 0, 1, 2...$$
 and $m = -\ell, -\ell + 1, ..., \ell$,

so there are $2\ell + 1$ choices for m. Note that the units work, since \hbar has the units of angular momentum. Note that the maximum of L_z^2 is $\hbar^2 \ell^2$, which is less than L^2 ; this is because $[L_x, L_y] = i\hbar L_z$ forbids setting $L_x^2 + L_y^2$ to zero for non-zero L_z .

• Here is how to prove the above. Recall that for any ket $|\psi\rangle$, the bra-ket $\langle \psi |\psi\rangle \equiv$ $|||\psi\rangle||^2 \geq 0$, with $|||\psi\rangle||^2 \geq 0$ if and only if the ket vanishes, $|\psi\rangle = 0$. Moreover, for any operator A,

$$\langle A^{\dagger}A \rangle \equiv \langle \psi | A^{\dagger}A | \psi \rangle \equiv ||A|\psi \rangle ||^2 \ge 0,$$

again with equality iff $A|\psi\rangle = 0$. In QM we have $L_a^{\dagger} = L_a$, as is the case for all physical observables. So we see from the above that $\langle L_x^2 \rangle \ge 0$, and $\langle L_y^2 \rangle \ge 0$ and $\langle L_z^2 \rangle \ge 0$. To do better, introduce:

• Raising and lowering operators (analogous to creation and annihilation operators in SHO): $L_{\pm} \equiv L_x \pm i L_y$, satisfy $[L_z, L_{\pm}] = \pm \hbar L_{\pm}$ and $[L^2, L_{\pm}] = 0$. It follows that L_{\pm} raises the L_z eigenvalue by $\pm \hbar$, but leaves alone the L^2 eigenvalue. Let's call $L^2 |\alpha\beta\rangle = \alpha |\alpha\beta\rangle$ and $L_z |\alpha\beta\rangle = \beta |\alpha\beta\rangle$. We then get $L_{\pm} |\alpha\beta\rangle \sim |\alpha, \beta \pm \hbar\rangle$. The L_{\pm} rotate the \vec{L} vector to point more, or less, along the \hat{z} axis.

• Note $L_{\pm}L_{\mp} = L^2 - L_z^2 \pm \hbar L_z$, and that $L_{\pm}^{\dagger} = L_{\mp}$. So $\langle L_{\pm}L_{\mp} \rangle \ge 0$ and $\langle L_{\pm}L_{\mp} \rangle \ge 0$ in any state. In particular, in the state $|\alpha\beta\rangle$ we have

$$\langle L_{+}L_{-}\rangle = \alpha - \beta^{2} + \hbar\beta \ge 0$$
 and $\langle L_{-}L_{+}\rangle = \alpha - \beta^{2} - \hbar\beta \ge 0$,

where we've fixed the normalization by $\langle \alpha, \beta | \alpha, \beta \rangle = 1$. Note that this also determines the normalization in $L_{\pm} | \alpha \beta \rangle \sim | \alpha, \beta \pm \hbar \rangle$:

$$L_{\pm}|\alpha,\beta\rangle = \sqrt{\alpha - \beta^2 \mp \hbar\beta} |\alpha,\beta \pm \hbar\rangle.$$

• But we saw that we can raise and lower β by acting on $|\alpha, \beta\rangle$ with L_{\pm} , which leaves α unchanged but takes $\beta \to \beta \pm \hbar$. If α and β were general numbers, by enough raising or lowering we'd eventually violate the above inequalities. The only way to avoid this is if there is a β_{max} , such that $L_{+}|\alpha, \beta_{max}\rangle = 0$, and a β_{min} such that $L_{-}|\alpha, \beta_{min}\rangle = 0$. It follows from the above then that $\alpha = \beta_{max}^{2} + \beta_{max}\hbar = \beta_{min}^{2} - \beta_{min}\hbar$. So $\beta_{min} = -\beta_{max}$. Moreover, must have that $L_{-}^{N}|\alpha, \beta_{max}\rangle \sim |\alpha, \beta_{max} - N\rangle$ must eventually vanish, so there is some integer N such that $\beta_{max} - N = \beta_{min}$, i.e. $2\beta_{max} = N$. So β_{max} can either be an integer or a half integer.

• For orbital angular momentum, $\beta_{max} \equiv \ell$ is an integer. Nature also use the halfinteger possibility, in the context of spin: fermions have half-integer total angular momentum, given by $\vec{J} = \vec{L} + \vec{S}$, where \vec{L} is the orbital part and \vec{S} is the spin part. Ignore \vec{S} for now, discuss it later.

• Instead of labeling the kets by α and β , label by ℓ and m, where $\alpha = \hbar^2 \ell(\ell+1)$ and $\beta = \hbar m$, and m runs from ℓ to $-\ell$, in integer steps (so there are $2\ell + 1$ values of m):

$$L^{2}|\ell,m\rangle = \hbar^{2}\ell(\ell+1)|\ell,m\rangle \qquad L_{z}|\ell,m\rangle = m\hbar|\ell,m\rangle$$

and

$$L_{\pm}|\ell,m\rangle = \hbar\sqrt{\ell(\ell+1) - m^2 \mp m}|\ell,m\pm 1\rangle.$$

• The $|\ell, m\rangle$ form a complete, orthonormal basis:

$$\langle \ell', m' | \ell, m \rangle = \delta_{\ell, \ell'} \delta_{m, m'} \qquad \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} |\ell, m \rangle \langle \ell, m| = \mathbf{1}.$$

• Now consider these kets in position space.

Use spherical coordinates. The $|\ell, m\rangle$ states are independent of the radial coordinate, r; they depend only on θ and ϕ . To see why, write $\vec{L} = \vec{x} \times \vec{p}$ in position space, by replacing $\vec{p} \rightarrow -i\hbar \nabla$. Converting to spherical coordinates, get

$$L_z \to -i\hbar \frac{\partial}{\partial \phi} \qquad L_{\pm} \to \hbar e^{\pm i\phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$$

and

$$L^2 \to -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right].$$

In position space the L^2 and L_z eigenkets become $\langle \theta, \phi | \ell, m \rangle = Y_{\ell,m}(\theta, \phi)$. Their definition in terms of their eigenvalue equations, $L^2 Y_{\ell,m}(\theta, \phi) = \hbar^2 \ell(\ell+1) Y_{\ell,m}(\theta, \phi)$ and $L_z Y_{\ell,m}(\theta, \phi) = m\hbar Y_{\ell,m}(\theta, \phi)$ are well known equations: the $Y_{\ell,m}(\theta, \phi)$ are the Spherical Harmonics, which always enter in solving problems in spherical coordinates.