
4/3/08 Lecture 2 outline

• Continue from last time. Experiment with waves and particles (classical). Illustrate

interference. Slits S1 and S2. With just S1 open get intensity I1 = |ψ1|
2, and with just S2

open get I2 = |ψ2|
2. Arrival of energy is smooth function of x and t. With both open get

I1+2 = |ψ1 + ψ2|
2 6= I1 + I2: interference pattern. Maxima when ∆φ = 2πn, and minima

when ∆φ = (2n + 1)π, with n integer. At xmin, opening extra other slit has the effect

of reducing the energy flow there. Now contrast with particles, where classical physics

suggests I1+2 = I1 + I2.

• Double-slit experiment with light. Find packets of energy and momentum, and also

interference! E = h̄ω and ~p = h̄~k. h̄ = h/2π ≈ 10−27ergsec. Born: ψ(~r, t) is a probability

amplitude, |ψ(~r, t)|2 gives the probability. de Broglie: matter behaves the same way. E.g.

a pellet with mass 1g and velocity 1cm/sec has λ = 2π/k = h/p ≈ 10−26cm. This is too

small to notice for objects that we see directly, but becomes important for objects like

electrons.

• Now expand a bit on the history.

• An old question: is light a particle or a wave? In 1800 Young’s double slit experiment

showed interference, suggests light is a wave. Later understood as solution of Maxwell’s

equations. Double slit, intensity I ∼ | ~E1 + ~E2|
2 = 4I1 cos2(k∆L/2). Also explains Snell’s

law, lenses, thin film interference, diffraction, diffraction gratings, etc. Visible light has

λ ∼ 4 − 7 × 10−7m.

• But it turns out that this, plus concepts from thermodynamics, leads to a paradox.

Also, disagreement with experiments around 1900.

• Blackbody radiation and the UV catastrophe. Picture each ~k mode as a har-

monic oscillator, one for each polarization. Let N(ω)dω be the number of wave modes

in the frequency range from ω to ω + dω. Consider first waves on a string, ψ(x, t) =

A sin(kx) cos(ωt), k = nπ/L, n = 1, 2 . . .. The number of modes in interval ∆k is L∆k/π,

so N(k)dk = Ldk/2π, where the 2 is because the standing wave is a superposition of 2

traveling waves, with k and −k. So can replace
∑

∞

n=1
→

∫

∞

−∞
Ldk/2π. For 3d waves, we

replace
∑

nx,ny ,nz
→

∫

V d3~k/(2π)3. Number of modes in d3~k is V d3~k/(2π)3. Write in

spherical coordinates, use ω = ck, and recall there are 2 polarizations (for light), to get

N(ω)dω =
V ω2dω

π2c3
.

Note that this density diverges for large frequencies.
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Each ~k mode of light behaves as a harmonic oscillator. A classical harmonic oscillator,

at temperature T , has average energy kBT , independent of the frequency. The energy

density (energy per unit volume of the box) in the range ω to ω + dω would then be

ucl(ω, T )dω = N(ω)kBTdω/V = kBTω
2dω/π2c3. Crazy - we would be cooked! For any

T 6= 0, would have divergent energy density at large frequencies. UV catastrophe. A

paradox in classical physics.

• Planck’s fix: assume radiation of frequency ω can only be absorbed or emitted in

quantized amounts, given by E = nh̄ω for integer n. Gives energy density of the glowing

light in the cavity:

u(ω, T ) =

(

h̄ω

eh̄ω/kN T − 1

) (

ω2

π2c3

)

.

(Planck originally wrote this in terms of ν = ω/2π and h = 2πh̄). For low frequencies,

h̄ω � kBT , the first factor → kBT , and so u→ ucl in this limit. For high frequencies, the

first factor goes to zero as e−h̄ω/kBT , avoiding the UV catastrophe.

Knowing the energy density inside the cavity also gives the energy flux through the

surface (e.g. if there were a hole). The emitted power per unit area per frequency is related

to the above energy density by

e(ω, T ) =
1

4
cu(ω, T ) =

1

4
c

(

h̄ω

eh̄ω/kN T − 1

) (

ω2

π2c3

)

.

This is the famous blackbody spectrum of radiated power. It appears everywhere in

Nature, e.g. the radiated power of a star (or the entire universe) is given by this formula.

Fits beautifully all the experimentally observed data, for h = 2πh̄ = 6.6261 × 10−34J · s.

(Explain the 1/4: light has velocity c, but only component perpendicular to an area

element counts. Let the normal to the area element be ẑ and use spherical coordinates,

with light direction given by θ, φ and our desired flux is then e = cu〈cos θ〉. Here we

average 〈cos θ〉 =
∫

hemi
cos θdΩ/

∫

hemi
dΩ, where dΩ = sin θdθdφ and hemi is because only

θ between 0 and π/2 leads to a flux out of the area element (for θ between π/2 and π, the

flux is inward); this gives 〈cosθ〉 = 1/4.)

The above expression is power radiated per area per frequency range. Integrating it

over all frequency, get the Stephan-Boltzmann result for the total power per unit area:

etotal(T ) =
∫

∞

0
e(ω, T )dν = σT 4, with σ = 2π5k4

B/15c2h3. These relations are very useful

in astrophysics and cosmology.
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