
4/15/08 Lecture 5 outline

• Last time, get 2-slit interference e.g. from ψ1 = eipx1/h̄ and ψ2 = eipx2/h̄, with p =

h̄ = h/λ, get |ψ1+ψ2|2 = 4 cos2(π∆x/λ), so constructive interference if ∆x ≡ x1−x2 = nλ

and destructive if x1−x2 = (n+ 1
2
)λ, (n is an integer). Now generalize about free particles:

• Free particle of mass m: momentum ~p = h̄~k and energy E = ~p2/2m = h̄ω. Write

wavefunction as a plane wave

ψ(~x, t) ∼ ei(~p·~x−Et)/h̄.

Note this has |ψ|2 which is independent of position and time: particle’s position is com-

pletely unknown, special case of Heisenberg uncertainty principle, ∆x∆px ≥ h̄/2. This is

related via ~p = h̄~k to a basic property of Fourier transforms, ∆x∆k ≥ 1
2
. Get state of

position localized in range ∆x by a superposition of plane waves, i.e. Fourier transform,

with wavenumber range ∆k.

• Uncertainty principle: ∆x∆px ≥ h̄/2. E.g. try to resolve the location of an electron

better by using light of smaller wavelength. But such light has bigger momentum, leads

to greater uncertainty in electrons momentum.

• Try to check which slit electron went through, and interference patten goes away.

• Let’s review Fourier transforms. To avoid rewriting too much, write Fourier trans-

form in notation of momentum p, with p = h̄k. Write first for just 1d.

ψ(x) =

∫

∞

−∞

dp√
2πh̄

eipx/h̄φ(p), φ(p) =

∫

∞

−∞

dx√
2πh̄

e−ipx/h̄ψ(x).

This is the Fourier transform and its inverse. The probability of finding particle in range

from x to x + dx is P (x)dx = |ψ(x)|2dx. The probability to find the particle having

momentum in the range from p to p+ dp is P (p)dp = |φ(p)|2dp.
Consider e.g. the case where ψ(x) is a Gaussian, centered at the origin

ψ(x) =

(

1√
2πσ

)1/2

exp(−x2/4σ2) → |φ(p)|2 =
1√
2πσ̃

exp(−p2/2σ̃2),

where σσ̃ = h̄/2. Note that the above wavefunction examples are properly normalized, to

have total probability one:

∫

∞

−∞

|ψ(x)|2 = 1,

∫

∞

−∞

|φ(p)|2 = 1.
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Find for this example that ∆x2 = 〈x2〉 − 〈x〉2 = σ2 and ∆p2 = 〈p2〉 − 〈p〉2 = σ̃2, so this

case saturates the uncertainty principle inequality (it’s an equality for the special case of

gaussians).

• The time evolution of a free particle is given by

ψ(x, t) =

∫

∞

−∞

dp√
2πh̄

ei(px−Et)/h̄φ(p), φ(p) =

∫

∞

−∞

dx√
2πh̄

e−ipx/h̄ψ(x, t = 0)

where E = p2/2m. Packet moves with velocity given by the group velocity, vg = dω/dk,

which for us is now vg = dE/dp = p/m, which is indeed reasonable: the group velocity

equals the particle’s velocity. The spreading of wave packets is generally given by d2ω/dk2,

which for us is d2E/dp2, which is 1/m for a non-relativistic particle.

For example, suppose

ψ(x, t = 0) =

(

1√
2πσ

)1/2

eip̄x/h̄ exp(−x2/4σ2) → |φ(p)|2 =
1√
2πσ̃

exp(−(p− p̄)2/2σ̃2),

which is of the Gaussian form, with average momentum p̄. As an example, let’s take

p̄ = 0, so it’s just a Gaussian, with zero average momentum. At time t = 0, it’s width

is σ. Plugging into above expression for time evolution, find that ψ(x, t) again has the

Gaussian form, but with σ →
√

σ + ith̄/2mσ. Gives a Gaussian probability, with σ(t) =
√

σ2 + (h̄t/2mσ)2. This spreading of the packet is just like diffraction: the more the

particle is localized, the more it will later spread out. E.g. an electron, localized initially

in σ = 10−10m spreads to 1AU (= 8 × 60 × 3 × 108m) in t ≈ 9 × 10−8s(!). Or 1 gram in

σ = 10−6m spreads to 2 × 10−6m in 1.6 × 1019s(!). Uncertainty principle again.

2


