4/15/08 Lecture 5 outline
e Last time, get 2-slit interference e.g. from v, = €%/ and 1y = e®2/" with p =
h=h/\, get |11 +12]? = 4cos?(mAxz/N), so constructive interference if Ax = 21 —x9 = nA
and destructive if z1 —z3 = (n+1)A, (n is an integer). Now generalize about free particles:
e Free particle of mass m: momentum p = hk and energy £ = p?/2m = hw. Write
wavefunction as a plane wave

@D(f, t) -~ ei(ﬁa_r:'—Et)/h‘

Note this has [1/|? which is independent of position and time: particle’s position is com-
pletely unknown, special case of Heisenberg uncertainty principle, AzAp, > h/2. This is
related via p = hk to a basic property of Fourier transforms, AzAk > % Get state of
position localized in range Az by a superposition of plane waves, i.e. Fourier transform,
with wavenumber range Ak.

e Uncertainty principle: AxAp, > h/2. E.g. try to resolve the location of an electron
better by using light of smaller wavelength. But such light has bigger momentum, leads
to greater uncertainty in electrons momentum.

e Try to check which slit electron went through, and interference patten goes away.

e Let’s review Fourier transforms. To avoid rewriting too much, write Fourier trans-

form in notation of momentum p, with p = hk. Write first for just 1d.

x) = ~ d—peipx/h — © dx e—ipx/h T
v = [ o), o) = [ e ),

This is the Fourier transform and its inverse. The probability of finding particle in range
from x to x + dx is P(x)dx = [(x)|?dx. The probability to find the particle having
momentum in the range from p to p + dp is P(p)dp = |$(p)|?dp.

Consider e.g. the case where 1 (x) is a Gaussian, centered at the origin

1/2
¢<x>=( ! ) exp(~2/40%) — (D) = e exp(—p?/252),
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where 06 = h/2. Note that the above wavefunction examples are properly normalized, to

have total probability one:
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Find for this example that Az? = (z?) — (2)? = 02 and Ap? = (p?) — (p)? = &2, so this
case saturates the uncertainty principle inequality (it’s an equality for the special case of
gaussians).

e The time evolution of a free particle is given by

e, t) = / LG (), () - /_ e (= 0)

where E = p?/2m. Packet moves with velocity given by the group velocity, v, = dw/dk,
which for us is now vy = dE/dp = p/m, which is indeed reasonable: the group velocity
equals the particle’s velocity. The spreading of wave packets is generally given by d?w/dk?,
which for us is d>E/dp?, which is 1/m for a non-relativistic particle.

For example, suppose
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which is of the Gaussian form, with average momentum p. As an example, let’s take

1/2
¢<x,t=o>=( ) ¢7/% oxp(—a? [40%) — o) = e exp(—(p — 5)*/252),

p = 0, so it’s just a Gaussian, with zero average momentum. At time ¢ = 0, it’s width
is 0. Plugging into above expression for time evolution, find that ¢ (z,t) again has the
Gaussian form, but with ¢ — \/m. Gives a Gaussian probability, with o(t) =
Vo2 + (ht/2mo)?. This spreading of the packet is just like diffraction: the more the

particle is localized, the more it will later spread out. E.g. an electron, localized initially
in 0 = 10719 spreads to 1AU (=8 x 60 x 3 x 10®m) in t ~ 9 x 1078s(!). Or 1 gram in

o = 107%m spreads to 2 x 107%m in 1.6 x 10'°s(!). Uncertainty principle again.



