
4/17/08 Lecture 6 outline

• Last time: Fourier transforms,

ψ(x) =

∫ ∞

−∞

dp√
2πh̄

eipx/h̄φ(p), φ(p) =

∫ ∞

−∞

dx√
2πh̄

e−ipx/h̄ψ(x).

This is the Fourier transform and its inverse. The probability of finding particle in range

from x to x + dx is P (x)dx = |ψ(x)|2dx. The probability to find the particle having

momentum in the range from p to p+ dp is P (p)dp = |φ(p)|2dp.
• Last time: The time evolution of a free particle is given by

ψ(x, t) =

∫ ∞

−∞

dp√
2πh̄

ei(px−Et)/h̄φ(p), φ(p) =

∫ ∞

−∞

dx√
2πh̄

e−ipx/h̄ψ(x, t = 0)

where E = p2/2m. Packet moves with velocity given by the group velocity, vg = dω/dk,

which for us is now vg = dE/dp = p/m, which is indeed reasonable: the group velocity

equals the particle’s velocity. The spreading of wave packets is generally given by d2ω/dk2,

which for us is d2E/dp2, which is 1/m for a non-relativistic particle.

For example, suppose

ψ(x, t = 0) =

(
1√
2πσ

)1/2

eip̄x/h̄ exp(−x2/4σ2) → |φ(p)|2 =
1√
2πσ̃

exp(−(p− p̄)2/2σ̃2),

which is of the Gaussian form, with average momentum p̄. As an example, let’s take

p̄ = 0, so it’s just a Gaussian, with zero average momentum. At time t = 0, it’s width

is σ. Plugging into above expression for time evolution, find that ψ(x, t) again has the

Gaussian form, but with σ →
√
σ + ith̄/2mσ. Gives a Gaussian probability, with σ(t) =

√
σ2 + (h̄t/2mσ)2. This spreading of the packet is just like diffraction: the more the

particle is localized, the more it will later spread out. E.g. an electron, localized initially

in σ = 10−10m spreads to 1AU (= 8 × 60 × 3 × 108m) in t ≈ 9 × 10−8s(!). Or 1 gram in

σ = 10−6m spreads to 2 × 10−6m in 1.6 × 1019s(!). Uncertainty principle again.

• Compute expectation values using probabilities, e.g.

〈f(x)〉 =

∫ ∞

−∞

f(x)|ψ(x, t)|2dx, 〈F (p)〉 =

∫ ∞

−∞

F (p)|φ(p)|2dp.

Can always compute either in position or momentum space, e.g.

〈f(x)〉 =

∫ ∞

−∞

φ∗(p)f(ih̄
d

dp
)φ(p)dp, 〈F (p)〉 =

∫ ∞

−∞

ψ∗(x)F (−ih̄ d

dx
)ψ(x)dx.
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In position space, we replace p → −ih̄ d
dx and in momentum space we replace x → ih̄ d

dp .

This lead into the basic postulates of Q.M.

• Examples: use above gaussian wavefunction, 〈p〉 = p0 and 〈x〉 = p0t/m. Expectation

values satisfy expected classical relations , example of Ehrenfest’s theorem.

• In classical mechanics, momentum and position are conjugate variables. Energy

and time are conjugate variables. In the Hamiltonian description, consider motion in (q, p)

phase space. Note: the uncertainty principle can be interpreted as saying that phase

space is pixelated, with a basic pixel size ∆q∆p = 1
2 h̄. This is very useful in statistical

mechanics! Recall Poisson brackets, {u, v} ≡ ∂u
∂qi

∂v
∂pi

− ∂u
∂pi

∂v
∂qi . Note that: {u, pi} = ∂u

∂qi

.

Also, d
dtu = ∂

∂tu + {H, u}. These relations illustrate the statements that momentum

generates translations in space, and energy generates translations in space. In quantum

mechanics, these relations are related to p = h̄k and E = h̄ω and that wavefunctions

depend on position and time as ψ ∼ ei(~p·~x−Et)/h̄.

• In quantum mechanics, the state of a system is given by a probability amplitude

|ψ(t)〉, which is a is a vector in a space (the Hilbert space). The norm of that vector gives

the probability. Position, momentum, energy, angular momentum are all replaced with

operators, acting on the vectors in the Hilbert space. The eigenvalues of these operators

are the observables. E.g. the allowed energies are the eigenvalues of the Hamiltonian

operator, H = p2/2m + V (x), where p and x are operators. The quantum nature comes

from commutation relations among these operators, in particular

[x, px] = ih̄, [y, py] = ih̄, [z, pz] = ih̄,

where [A,B] ≡ AB−BA. The classical limit is h̄→ 0, where the operators commute. The

fact that they do not commute for h̄ 6= 0 means that one cannot simultaneously measure

both the position and the momentum of a particle to arbitrary precision. This is the

statement of the Heisenberg uncertainty principle, ∆x∆px ≥ h̄/2. Again, this is related

via ~p = h̄~k to a basic property of Fourier transforms, ∆x∆k ≥ 1
2
.

• Let’s discuss operators, vector spaces, and the Dirac bra-ket notation. To set the

notation, consider a vector in K dimensions. We can expand it as ~v =
∑K

i=1 êivi, where

êi are taken to be K orthonormal basis vectors.

• We’re interested in complex vectors, and then the condition is êi · ê∗j = δij . Then

vi = ~v · e∗i . Consider ~v as a matrix v, with 1 column and K rows. The inner product of

two vectors v and w is then 〈w|v〉 ≡ w†v =
∑K

i=1w
∗
i vi. Note that this is a single, complex

number, and that 〈w|v〉∗ = 〈v|w〉. It follows that 〈v|v〉 is real, non-negative, and only

vanishes if the vector v = 0.
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